Study: Blue light proves to have powerful bacteria-killing ability

Blue light has proven to have powerful bacteria-killing ability in the laboratory. The potent antibacterial effects of irradiation using light in the blue spectra have now also been demonstrated in human and animal tissues. A series of groundbreaking articles that provide compelling evidence of this effect are published in Photomedicine and Laser Surgery, a peer-reviewed journal published by Mary Ann Liebert, Inc., publishers. The articles are available on the Photomedicine and Laser Surgery website.

"Bacterial resistance to drugs poses a major healthcare problem," says Co-Editor-in-Chief Chukuka S. Enwemeka, PhD, Dean, College of Health Sciences, University of Wisconsin--Milwaukee, in the accompanying Editorial "Antimicrobial Blue Light: An Emerging Alternative to Antibiotics," citing the growing number of deadly outbreaks worldwide of methicillin-resistant Staphylococcus aureus (MRSA). The articles in this issue of Photomedicine and Laser Surgery provide evidence that "blue light in the range of 405-470 nm wavelength is bactericidal and has the potential to help stem the ongoing pandemic of MRSA and other bacterial infections."

In the article "Effects of Photodynamic Therapy on Gram-Positive and Gram-Negative Bacterial Biofilms by Bioluminescence Imaging and Scanning Electron Microscopic Analysis," Aguinaldo S. Garcez, PhD and coauthors show that photodynamic therapy and methylene blue delivered directly into the root canal of a human tooth infected with a bacterial biofilm was able to destroy both Gram-positive and Gram-negative bacteria, disrupt the biofilms, and reduce the number of bacteria adhering to the tooth.

Raymond J. Lanzafame, MD, MBA, and colleagues demonstrated significantly greater bacterial reduction in the treatment of pressure ulcers in mice using a combination of photoactivated collagen-embedded compounds plus 455 nm diode laser irradiation compared to irradiation alone or no treatment. The antibacterial effect of the combined therapy increased with successive treatments, report the authors in the article "Preliminary Assessment of Photoactivated Antimicrobial Collagen on Bioburden in a Murine Pressure Ulcer Model."

In the article "Wavelength and Bacterial Density Influence the Bactericidal Effect of Blue Light on Methicillin-Resistant Staphylococcus aureus (MRSA)," Violet Bumah, PhD and coauthors compared the bacteria-killing power of 405 nm versus 470 nm light on colonies of resistant Staph aureus and how the density of the bacterial colonies could limit light penetration and the bactericidal effects of treatment.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study links gut bacteria infection to Alzheimer's disease progression