New mathematical model predicts blood glucose levels with more than 90% accuracy

A mathematical model created by Penn State researchers can predict with more than 90 percent accuracy the blood glucose levels of individuals with type 1 diabetes up to 30 minutes in advance of imminent changes in their levels -- plenty of time to take preventative action.

"Many people with type 1 diabetes use continuous glucose monitors, which examine the fluid underneath the skin," said Peter Molenaar, Distinguished Professor of Human Development and Family Studies and of psychology. "But the glucose levels under the skin trail blood glucose levels from anywhere between 8 and 15 minutes. This is especially problematic during sleep. Patients may become hypoglycemic well before the glucose monitor alarm tells them they are hypoglycemic, and that could lead to death."

According to Molenaar, a person's blood glucose levels fluctuate in response to his or her insulin dose, meal intake, physical activity and emotional state. How great these fluctuations are depends on the individual.

"In the past decade, much progress has been made in the development of a mechanical 'artificial pancreas,' which would be a wearable or implantable automated insulin-delivery system consisting of a continuous glucose monitor, an insulin pump and a control algorithm closing the loop between glucose sensing and insulin delivery," he said. "But creating an artificial pancreas that delivers the right amount of insulin at the right times has been a challenge because it is difficult to create a control algorithm that can handle the variability among individuals. Our new model is able to capture this variability. It predicts the blood glucose levels of individuals based on insulin dose and meal intake."

The researchers created a time-varying model estimated by the extended Kalman filtering technique. This model accounts for time-varying changes in glucose kinetics due to insulin and meal intake.

The team tested the accuracy of its model using an FDA-approved UVa/Padova simulator with 30 virtual patients and five living patients with type 1 diabetes. The results appeared online this week in the Journal of Diabetes Science and Technology.

"We learned that the dynamic dependencies of blood glucose on insulin dose and meal intake vary substantially in time within each patient and between patients," said Qian Wang, professor of mechanical engineering. "The high prediction fidelity of our model over 30-minute intervals allows for the execution of optimal control of fast-acting insulin dose in real time because the initiation of insulin action has a delay of less than 30 minutes. Our approach outperforms standard approaches because all our model parameters are estimated in real time. Our model's configuration of recursive estimator and optimal controller will constitute an effective artificial pancreas."

Source:

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Just five minutes of activity a day could reduce blood pressure