Researcher to recieve 2014 EMBO Gold Medal at FEBS-EMBO Meeting

EMBO today announced Sophie Martin of the University of Lausanne, Switzerland, as the winner of the 2014 EMBO Gold Medal. The award acknowledges her work to understand the molecular events that define the organization and development of the cell.

Martin has been working for the past 15 years to understand cellular polarity, in particular the way in which the spatial organization of cells contributes to cell size and cell division. In the last 11 years, she has been using fission yeast, which grow as single, rod-shaped cells, as a model system for her investigations.

In 2009, Martin discovered that a protein kinase called Pom1, which forms concentration gradients that originate from each end of the cell, regulates progression through the cell cycle. Martin proposed a model for how Pom1 gradients provide spatial information that prevents fission yeast cells from dividing until they reach a sufficient length.1 This work renewed interest in the mechanisms of regulation of cell size.

Earlier work by Martin and colleagues identified a protein present on the growing ends of microtubules - the tube-like structures critical for shaping cells - and showed that this protein binds to an actin nucleation factor. Her work revealed a potential mechanism by which microtubules direct where the actin cytoskeleton promotes cell growth. 2

"From early in her career, Sophie has demonstrated exceptional and consistent scientific achievement in molecular and cell biology," said EMBO Member Daniel St Johnston, who supervised Martin when she was a PhD student studying cell polarization in Drosophila at the Wellcome Trust/Cancer Research UK Gurdon Institute at the University of Cambridge, England. "She has also demonstrated a remarkable talent that includes a proven ability to change research fields and work on different model organisms while maintaining leadership roles in each of her chosen scientific areas."

Martin's earlier research on Drosophila focused on LKB1, a homologue of a human tumour suppressor protein. Her study revealed that loss of lkb1 causes defects in cell polarity and tissue disorganization. This work was one of the first to propose that the loss of cell polarity contributes to the formation of tumours, as individuals affected by Peutz-Jeghers syndrome, which is caused by lkb1 mutations, have cancerous intestinal polyps. 3

"It is an immense honour to receive such a prestigious award," said the prizewinner upon hearing the news. "I have always been fascinated by how biological processes are spatially organized within cells. I feel incredibly lucky not only to have the freedom to study this basic problem but to be rewarded for it." She added: "I am extremely grateful to past and present colleagues who have contributed to this work through their insight and support."

"Sophie Martin is a superb scientist. She is also a very active citizen of the scientific community, both locally and internationally," stated EMBO Member Pierre G-nczy from the Swiss Institute for Experimental Cancer Research (ISREC) at the School of Life Sciences of the Swiss Federal Institute of Technology in Lausanne (EPFL).

Sophie Martin will receive the EMBO Gold Medal and an award of 10,000 Euros on 2 September 2014 at The FEBS-EMBO Meeting in Paris where she will also give a lecture about her research.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Topical immunotherapy clears precancerous skin lesions and reduces cancer risk