Single-cell genomics study confirms that immune cells produce steroids

Researchers at the European Bioinformatics Institute (EMBL-EBI) and the Wellcome Trust Sanger Institute have discovered that some immune cells turn themselves off by producing a steroid. The findings, published in Cell Reports, have implications for the study of cancers, autoimmune diseases and parasitic infections.

If you've ever used a steroid, for example cortisone cream on eczema, you'll have seen first-hand how efficient steroids are at suppressing the immune response. Normally, when your body senses that immune cells have finished their job, it produces steroids -but which cells actually do that?

In this latest study, scientists looked at Th2 immune cells during parasitic infection and saw that at a certain point, these cells produce a steroid called pregnenolone.

"We were really surprised to see that these immune cells are producing a steroid. In cell culture, we see that the steroids play a part in regulating T cell proliferation," says Bidesh Mahata in the Teichmann group at EMBL-EBI and Sanger, who designed the study. "We had already seen that T-helper cells were producing steroids, but initially we were blind - what was going on?"

"Because we had access to data from single-cell sequencing experiments, we could conduct deep statistical analyses on a very large and comprehensive dataset," explains Sarah. "That pointed us to the genes involved in pregnenolone production at the point when Th2 cells are being produced, and we could deduce that the Th2 cells themselves were involved in immunosuppression."

The researchers suggest that bringing the immune system back into balance is an intrinsic part of this particular immune response.

"We confirmed our findings experimentally, showing that pregnenolone inhibits both Th cell proliferation and B cell immunoglobulin class switching," adds Bidesh. "We think this points to the idea that Th2 cells differentiate into steroid-producing cells as part of a larger mechanism to bring the immune system back into balance."

Source: European Molecular Biology Laboratory

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers discover how mutations disrupt protein splicing and cause disease