BU researchers find possible way to prevent Alzheimer's disease

Boston University School of Medicine researchers may have found a way to delay or even prevent Alzheimer's disease (AD). They discovered that pre-treatment of neurons with the anti-aging protein Klotho can prevent neuron death in the presence of the toxic amyloid protein and glutamate. These findings currently appear in the Journal of Biological Chemistry.

Alzheimer's disease is the most frequent age-related dementia affecting 5.4 million Americans including 13 percent of people age 65 and older and more than 40 percent of people over the age of 85. In AD the cognitive decline and dementia result from the death of nerve cells that are involved in learning and memory. The amyloid protein and the excess of the neurotransmitter, glutamate are partially responsible for the neuronal demise.

Nerve cells were grown in petri dishes and treated with or without Klotho for four hours. Amyloid or glutamate then were added to the dish for 24 hours. In the dishes where Klotho was added, a much higher percentage of neurons survived than in the dishes without Klotho.

"Finding a neuroprotective agent that will protect nerve cells from amyloid that accumulates as a function of age in the brain is novel and of major importance," explained corresponding author Carmela R. Abraham, PhD, professor of biochemistry and pharmacology at BUSM. "We now have evidence that if more Klotho is present in the brain, it will protect the neurons from the oxidative stress induced by amyloid and glutamate.

According to the researchers, Klotho is a large protein that cannot penetrate the blood brain barrier so it can't be administered by mouth or injection. However in a separate study the researchers have identified small molecules that can enter the brain and increase the levels of Klotho. "We believe that increasing Klotho levels with such compounds would improve the outcome for Alzheimer's patients, and if started early enough would prevent further deterioration. This potential treatment has implications for other neurodegenerative diseases such as Parkinson's, Huntington's, ALS and brain trauma, as well," added Abraham.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
The role of geroscience in understanding Alzheimer’s Disease