IUPUI researcher awarded NIH grant to study neuroscience underlying obstructive sleep apnea

Sleep apnea affects an estimated 25 million adults in the United States and is associated with increased risk of hypertension, stroke, health attack and heart failure.

Yaroslav Molkov, assistant professor of mathematics in the School of Science at Indiana University-Purdue University Indianapolis, has received a $1.4 million grant from the National Institutes of Health to study the neuroscience underlying obstructive sleep apnea -- specifically targeting how respiration and high blood pressure are linked in the brain.

Obstructive sleep apnea is characterized by recurrent upper airway collapses resulting in brief interruptions of breathing during sleep. Episodes occur repeatedly. Untreated obstructive sleep apnea has cumulative effects on the cardiovascular system, leading to hypertension that may be drug resistant. It is estimated that half of all individuals with obstructive sleep apnea are hypertensive.

The five-year award (R01AT008632-01) from NIH's National Center for Complementary and Integrative Health will enable Molkov to develop a computational model to simulate the electrical signals generated by neurons that travel from the brain to the muscles controlling breathing and blood vessels.

Molkov and neurophysiologists Ana Abdala and Julian Paton of the University of Bristol in the United Kingdom and Daniel Zoccal of Sao Paulo State University in Brazil are collaborating on this interdisciplinary project that will investigate the mechanisms that link breathing and control of blood pressure in the brain in both health and disease.

Molkov's work will inform the neurophysiology experiments, and he will translate findings of this work into what he describes as the first computer model with the potential to generate effective means of controlling hypertension by exploiting its association with respiratory mechanisms.

"Understanding the complex neuroscience of how breathing and control of blood pressure are linked in the brain will be instrumental in developing alternative approaches to treatment of hypertension," said Molkov, who joined the School of Science at IUPUI in 2011. "Conventional therapeutic management is poor. New answers are needed."

Molkov is an applied mathematician with extensive training in computational neuroscience.

For the past several years, he has studied neurophysiology of respiration and worked with respiratory system physiological data, computer modeling of neurons, neural networks and large-scale neural systems, and analyzed these models. He is the first author of "A Closed-Loop Model of the Respiratory System: Focus on Hypercapnia and Active Expiration," published in PLOS One on Oct. 10, 2014 and of "Physiological and Pathophysiological Interactions Between the Respiratory Central Pattern Generator and the Sympathetic Nervous System," published in Progress in Brain Research in 2014.

IUPUI students at the undergraduate, graduate and post-doctoral levels will work with Molkov on the study.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
High job strain linked to increased sleep disturbances in middle-aged workers