New OU photothermal therapy may eliminate tumors without affecting healthy cells in the body

A staggering 1.7 million persons in the United States will be diagnosed with cancer in 2016, with 600,000 cases ending in death. University of Oklahoma researchers have collaborated to design a novel, non-invasive cancer therapy that could eliminate tumors without affecting the healthy cells in the body.

The cancer therapy targets specific cancer cells using single-walled carbon nanotubes that bind directly to the tumor, then are heated with near-infrared light. The OU photothermal therapy is most effective against shallow or surface tumors in breast, bladder, esophageal and melanoma cancers, without the adverse side effects of chemotherapy, radiation or surgery.

The therapy was created by Roger G. Harrison, Jr. and Daniel E. Resasco, professors in the School of Chemical, Biological and Materials Engineering, Gallogly College of Engineering. Harrison is also affiliated with the Stephenson School of Biomedical Engineering. Harrison's expertise is protein design, production and purification, while Resasco focuses on nanostructured materials based on single-walled carbon nanotubes.

"Single-walled carbon nanotubes are unique in that they strongly absorb near-infrared light in very narrow, but tunable, wavelength ranges, while biological systems have very low levels of absorption of near-infrared light," said Harrison. "The targeting of single-walled carbon nanotubes to tumors and subsequent localized application of near-infrared light allows the selective elimination of tumors."

"Very few groups around the world are able to synthesize nanotubes which absorb light in a narrow range of wavelength," said Resasco. "We have a unique method of synthesis that produces single-wall nanotubes with a narrow distribution of diameters and carbon atom arrangements, which causes this selective light absorption in the near-infrared spectrum."

The new OU photothermal therapy consists of single-walled carbon nanotubes of tailored absorption wavelength injected into the blood stream where proteins on the nanotubes selectively bind to blood vessels that supply a tumor. Within 24 hours, a laser light is applied to the tumor causing the nanotubes to heat up, which causes the tumor to heat and be eliminated. The photothermal therapy has been tested and proven in the laboratory.

The OU researchers already have one U.S. patent for this technology, and a second patent is nearing issuance. The OU Office of Technology Development and the inventors are actively seeking licensees for this novel therapy to move to clinical trials.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study uncovers why white button mushrooms may help prevent prostate cancer progression