New light-trapping sensor could help detect drugs, all biological and chemical samples

Scientists searching for traces of drugs, bomb-making components and other chemicals often shine light on the materials they're analyzing.

This approach is known as spectroscopy, and it involves studying how light interacts with trace amounts of matter.

One of the more effective types of spectroscopy is infrared absorption spectroscopy, which scientists use to sleuth out performance-enhancing drugs in blood samples and tiny particles of explosives in the air.

While infrared absorption spectroscopy has improved greatly in the last 100 years, researchers are still working to make the technology more sensitive, inexpensive and versatile. A new light-trapping sensor, developed by a University at Buffalo-led team of engineers and described in an Advanced Optical Materials study, makes progress in all three areas.

"This new optical device has the potential to improve our abilities to detect all sorts of biological and chemical samples," says Qiaoqiang Gan, PhD, associate professor of electrical engineering in the School of Engineering and Applied Sciences at UB, and the study's lead author.

Co-authors of the study -- which will be featured on the cover of September's Advanced Science News -- in Gan's lab include Dengxin Ji, Alec Cheney, Nan Zhang Haomin Song and Xie Zeng, PhD. Additional co-authors come from Fudan University and Northeastern University, both in China, and the University of Wisconsin-Madison.

The sensor works with light in the mid-infrared band of the electromagnetic spectrum. This part of the spectrum is used for most remote controls, night-vision and other applications.

The sensor consists of two layers of metal with an insulator sandwiched in between. Using a fabrication technique called atomic layer deposition, researchers created a device with gaps less than five nanometers (a human hair is roughly 75,000 nanometers in diameter) between two metal layers. Importantly, these gaps enable the sensor to absorb up to 81 percent of infrared light, a significant improvement from the 3 percent that similar devices absorb.

The process is known as surface-enhanced infrared absorption (SEIRA) spectroscopy. The sensor, which acts as a substrate for the materials being examined, boosts the sensitivity of SEIRA devices to detect molecules at 100 to 1,000 times greater resolution than previously reported results.

The increase makes SEIRA spectroscopy comparable to another type of spectroscopic analysis, surface-enhanced Rama spectroscopy (SERS), which measures light scattering as opposed to absorption.

The SEIRA advancement could be useful in any scenario that calls for finding traces of molecules, says Ji, the first author and a PhD candidate in Gan's lab. This includes but is not limited to drug detection in blood, bomb-making materials, fraudulent art and tracking diseases.

Researchers plan to continue the research, and examine how to combine the SEIRA advancement with cutting-edge SERS.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Incorrect arm positioning inflates blood pressure readings, risking misdiagnosis