New study offers insights on mechanisms behind development of kidney damage due to obesity

A new study provides insights on the mechanisms behind the development of kidney damage due to obesity. The findings, which appear in an upcoming issue of the Journal of the American Society of Nephrology (JASN), point to a potential target for protecting the kidney health of individuals with obesity.

Obesity can cause structural and functional changes in the kidneys, which may help explain why individuals with obesity face an elevated risk of chronic kidney disease and its progression to kidney failure. Although multiple metabolic factors have been proposed to contribute to obesity-induced kidney problems, the underlying mechanisms are not completely understood.

To investigate, a team led by Joseph Tam, DMD, PhD and PhD student Shiran Udi, MSc (Institute for Drug Research, The Hebrew University of Jerusalem, in Israel) examined the kidney cells that are responsible for the reabsorption of nutrients, while allowing other substances of no nutritional value to be excreted in the urine. These renal proximal tubular cells (RPTCs) are especially sensitive to the accumulation of fat, or lipids, an effect called lipotoxicity. The researchers examined the potential role of endocannabinoids, lipid molecules that act on a cellular receptor (CB1R), in RPTC lipotoxicity.

Mice that lacked expression of the receptor in RPTCs experienced significantly less obesity-induced lipid accumulation in the kidney as well as less kidney dysfunction, injury, inflammation, and scarring. Moreover, the study revealed the molecular signaling pathway involved in mediating the CB1R-induced kidney injury and lipotoxicity in RPTCs. Specifically, these deleterious effects associated with decreased activation of liver kinase B1 and the energy sensor AMP-activated protein kinase, as well as reduced fatty acid β-oxidation.

"This work provides a novel approach to slow the development of renal injury through chronic blockade of peripheral CB1Rs," said Dr. Tam. "And, it also supports strategies aimed at reducing the activity of the endocannabinoid system, specifically in the kidney, to attenuate the development of RPTC dysfunction in obesity."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research reveals key to understanding kidney cancer treatment variability