New sample storage technique could lead to better health care in resource-limited regions

Blood and urine tests play vital roles in modern medicine. Yet in vast regions of the world where refrigeration is not available, preserving samples for testing is virtually impossible. Now in a study appearing in ACS' journal Chemistry of Materials, scientists report that encapsulating indicators of disease from samples in tiny metal-organic hybrid structures could help. They say finding could lead to better health care in resource-limited countries.

Clinical labs conduct more than 7 billion laboratory tests -- many of them involving blood and urine -- in the U.S. each year, according to the American Clinical Laboratory Association. However, without refrigeration, these samples degrade quickly and that can lead to testing errors. But in many parts of the world, refrigeration isn't available and, as a result, blood and urine testing isn't practical. Preservatives such as boric acid are only good for short-term storage, and dried blood samples are still difficult to implement in resource-limited areas and can result in aggregation. Metal-organic frameworks (MOFs) are porous structures that can encapsulate and protect molecules, and in previous research, Srikanth Singamaneni and colleagues showed that MOFs can preserve proteins in biosensors. So, the team sought to overcome the challenges of sample degradation with MOFs.

The researchers mixed MOF precursors into blood and urine samples from healthy volunteers that had been "spiked" with biological markers for ovarian cancer and acute kidney damage, respectively, and then air-dried the samples. The samples were stored in temperatures ranging from 77 to 140 degrees Fahrenheit for up to four weeks. The researchers found that after one week, urine markers encapsulated with MOFs that were stored at temperatures up to 104 degrees retained more than 85 percent of the biomarker for kidney damage compared to samples without MOFs, which retained less than 40 percent. Similar results were obtained with treated and untreated blood samples stored for four weeks. The researchers say that this technique was as effective at preserving biomarkers as refrigeration. They conclude that using MOF-based structures in conjunction with dry spot collection techniques could lead to better diagnoses and medical care in underserved nations.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
FDA strengthens AI regulation to ensure patient safety and innovation in healthcare