Innovative research could lead to new ways to treat, prevent cancer

Research into cancer can provide new insight into how this disease works and how it can be stopped. The Experimental Biology 2018 meeting (EB 2018) will showcase innovative research that could lead to new ways to treat and prevent cancer.

Potential treatment for pancreatic cancer

Pancreatic ductal adenocarcinoma (PDAC), which makes up 90 percent of all pancreatic cancers, has a 5-year survival rate of less than five percent. The cancer is not only difficult to detect but treatment is often complicated by mutations in the p53 tumor suppressor gene that make the cancer cells resistant to chemotherapy. Researchers from the Human BioMolecular Research Institute, University of California San Diego and ChemRegen, Inc. developed a new compound that could be useful for treating pancreatic cancer. They previously showed that the compound killed PDAC cells with and without mutant p53 and strongly inhibited tumor growth in an invasive PDAC tumor mouse model. In new work, the researchers showed that the compound works by uniquely targeting two human cell death pathways: programmed cell death, or apoptosis, and the intracellular degradation system known as autophagy. They also showed that the compound's potency comes from its ability to induce crosstalk between PDAC cell death pathways.

Jiongjia Cheng will present this research at the American Society for Pharmacology and Experimental Therapeutics (ASPET) annual meeting from 12:302:30 p.m. Tuesday, April 24, in Exhibit Halls A-D (poster C197) (abstract).

Insights into chemotherapy-associated pain

Patients receiving anti-cancer drugs often experience debilitating pain because of a condition known as chemotherapy-induced peripheral neuropathy. Scientists don't fully understand why the drugs cause this condition, which currently has no treatment. In a new study, researchers from the University of Texas Health Science Center at San Antonio discovered that exposure to vinca alkaloids and taxanes chemotherapy drugs was associated with an immediate pain response activated through the peripheral nerves that detect pain stimuli. Their experiments revealed that the chemotherapy drugs cause overexcitation of sensory neurons by specifically activating the an ion channel (TrpA1) involved in pain perception. The study represents the first demonstration of direct activation of sensory neurons by anti-cancer drugs and supports a role for TrpA1 in the development of chemotherapy-induced peripheral neuropathy. The findings could lead to new treatments for pain associated with chemotherapy drugs.

Nina Boiko will present this research at the American Physiological Society annual meeting from 78:30 p.m. Saturday, April 21, in the Sails Pavilion (poster SH16) (abstract); from 9:4510 a.m. Monday, April 23, in Room 25C; and from 10 a.m.–noon Monday, April 23, in the Exhibit Hall (poster A518).

Highly potent NSAID inhibits colon cancer

Indomethacin is a highly potent nonsteroidal anti-inflammatory drug (NSAID) that has shown anticancer properties in people and animal models. To find out if this drug inhibits colon cancer, researchers from University of Texas Health Sciences Center in Houston conducted a study involving unmodified indomethacin and indomethacin modified with phosphatidylcholine to protect against NSAID injury in the gastrointestinal tract. In cultured cancer cells from mice, doses of both indomethacin formulations significantly inhibited colon cancer cell growth in culture, with the phosphatidylcholine formulation showing slightly more potency at the lowest dose tested. Similarly, in mice injected with colon cancer cells, treatment with both forms of indomethacin brought significant reductions in the number of tumors compared to mice receiving no treatment. The researchers conclude that indomethacin and phosphatidylcholine-indomethacin are strong and effective inhibitors of colon cancer cell growth and hold potential for preventing, and possibly treating, colorectal cancer in people.

Lenard Lichtenberger will present this research at the ASPET annual meeting from 12:30 p.m.2 p.m. Monday, April 23, in Exhibit Halls A-D (poster C243 701.9) (abstract).

Understanding what drives breast cancer growth

Cold-inducible RNA binding protein (CIRP) plays an important role in regulating gene expression and how cells respond to stress. To better understand CIRP's role in breast cancer, researchers from the University of New Mexico Health Sciences Center are studying a mouse model of breast cancer that expresses CIRP at levels that are higher than normal. The researchers report that the increased levels of CIRP inhibited growth, progression and metastasis of tumors. These anti-cancer effects were associated with changes in immune system signals known as cytokines. Specifically, the mice exhibited decreased levels of cytokines that promote an environment favorable for tumor growth and increased levels of cytokines that create an antitumorigenic environment. The researchers continue to study the mechanisms involved in CIRP's ability to influence signaling between cancer and immune cells so that this information could be used to improve standard therapies and immunotherapeutic approaches for treating breast cancer.

Daniel Lujan will present this research at the American Association of Anatomists annual meeting during the Cell Biology Award Hybrid Symposium at 11:30 a.m. Sunday, April 22, in Room 11A (abstract).

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
How AI is advancing mammographic density-based breast cancer risk prediction