Researchers design new combination therapy for reducing NSCLC cell growth

Lung cancer is the leading cause of cancer death among men and women. About 85 percent of lung cancers are non-small cell lung cancer. For a handful of these patients, therapies that target specific genetic mutations are effective. But for the majority of non-small cell lung cancer patients, targeted therapies are limited and many patients develop resistance to treatment, highlighting the need for other options.

Moffitt Cancer Center researchers are combining the large-scale study of proteins (proteomics) with a new data integration method to identify a previously unknown mechanism for midostaurin in lung cancer. Midostaurin is a drug approved by the United States Food and Drug Administration for the treatment of acute myeloid leukemia and advanced systemic mastocytosis. Their study was published in the journal Molecular & Cellular Proteomics.

The research team led by Uwe Rix, Ph.D., associate member of the Drug Discovery Department at Moffitt, worked to identify all of the proteins that interact with midostaurin in non-small cell lung cancer cells in the lab. They then used a data analysis technique developed in the Rix lab to further examine the pathways associated with those proteins. In the end, the researchers identified three protein targets of midostaurin, TBK1, PDPK1 and AURKA, previously unknown to be important for midostaurin's mechanism of action in lung cancer cells.

This discovery allowed the team to design a combination therapy using midostaurin and BI2536, a protein inhibitor currently being investigated for the treatment of multiple cancers, which had a much greater effect on reducing non-small cell lung cancer cell growth than using either drug alone.

"Our integrated proteomics approach was particularly significant in the discovery of midostaurin's new mechanism of action, as none of the identified proteins are mutated at the gene level and would have been missed by traditional genomic screens," said Rix. "Utilizing protein pathway analysis in combination with functional proteomic techniques opens up the possibility for the identification of previously unknown actionable drug targets and combination therapies for many different cancers."

Source: https://moffitt.org/newsroom/press-release-archive/2018/moffitt-researchers-use-new-technique-to-identify-a-novel-drug-combination-for-non-small-cell-lung-cancer/

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Air pollution linked to head and neck cancer risk