New 'virtual biopsy' device developed to detect skin tumors

Using sound vibrations and pulses of near-infrared light, a Rutgers University scientist has developed a new "virtual biopsy" device that can quickly determine a skin lesion's depth and potential malignancy without using a scalpel.

New
The virtual biopsy prototype device can distinguish between healthy skin and different types of skin lesions and carcinomas. Credit: Rutgers University

The ability to analyze a skin tumor non-invasively could make biopsies much less risky and distressing to patients, according to a report in Wiley Online Library. Currently, physicians who perform surgical biopsies often don't know the extent of a lesion - and whether it will be necessary to refer the patient to a specialist for extensive tissue removal or plastic surgery - until surgery has already begun.

The first-of-its-kind experimental procedure, called vibrational optical coherence tomography (VOCT), creates a 3-D map of the legion's width and depth under the skin with a tiny laser diode. It also uses soundwaves to test the lesion's density and stiffness since cancer cells are stiffer than healthy cells. An inch-long speaker applies audible soundwaves against the skin to measure the skin's vibrations and determine whether the lesion is malignant.

This procedure can be completed in 15 minutes with no discomfort to the patient, who feels no sensation from the light or the nearly inaudible sound. It's a significant improvement over surgical biopsies, which are invasive, expensive and time consuming."

Lead researcher Frederick Silver, a professor of pathology and laboratory at Rutgers Robert Wood Johnson Medical School

The study found that a prototype VOCT device, which awaits FDA approval for large-scale testing, is able to accurately distinguish between healthy skin and different types of skin lesions and carcinomas. The researchers tested the device over six months on four skin excisions and on eight volunteers without skin lesions. Further studies are needed to fine-tune the device's ability to identify a lesion's borders and areas of greatest density and stiffness, which would allow physicians to remove tumors with minimally invasive surgery.

Source:

Rutgers University

Journal reference:

Silver, F.H. et al. (2019) Comparative “virtual biopsies” of normal skin and skin lesions using vibrational optical coherence tomography. Skin Research and Technology. doi.org/10.1111/srt.12712.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scientists discover key age-related biological shifts at 40 and 60