Research identifies neural pathway involved in memory consolidation during sleep

A new study could supply the missing link in the story of the brain consolidates floating memories into a permanent structure while we sleep. The study, published in the journal eNeuro, shows how a brain region, appropriately called the nucleus reuniens, ‘goes between’ two other memory-linked structures – the hippocampus and the prefrontal cortex.

As a result of this mediation, which occurs during slow wave sleep, the brain shows highly coordinated slow large pulsations in these two widely separated areas, which leads to establishing and organizing memories into a long-term form.

The nucleus reuniens may be responsible for coordinating activity between the prefrontal cortex and hippocampus, study shows
The nucleus reuniens may be responsible for coordinating activity between the prefrontal cortex and hippocampus, study shows. Credit: University of Alberta

Sleep and the brain

Sleep is a unique phenomenon in which the body fails to respond to conscious cues from other outside influences, but the brain acts in complete synchrony, harmonizing and consolidating various areas of functional learning and memory in its different regions. This is especially recognizable in the coordination that occurs between the hippocampus and the neocortex, and which underlies the establishment of episodic memory.

Slow-wave sleep is the stage at which sleep occurs in the deepest form. This type of sleep is critical to ensure recovery of muscle and brain health, and in the organization of memory.

The study and its findings

The current study was carried out in rats anesthetized with urethane, to simulate forebrain inactivity during sleep. At this time, the nucleus reuniens, an area within the thalamus, that is linked to both prefrontal cortex and hippocampus, shows a pattern of slow pulsatile activity within its neurons when the forebrain is inactive, which synchronizes with very slow but large brain oscillations, occurring at a rate of one a second.

When the neurons within the nucleus reuniens, or the fibers leading from these neurons to the cingulum bundle of nerves, were activated by optogenetics, a particular layer of nerve cells (called the stratum lacunosum-moleculare, or SLM) within the hippocampus responded by producing nerve impulses. Interestingly, the SLM is the same layer of neurons in which the power of slow-wave sleep-related slow oscillations is maximum. Similar findings occurred when the medial part of the prefrontal cortex was stimulated, though with a slightly longer delay.

Next, they inhibited the neurons in the nucleus reuniens so that they could not transmit impulses. They then repeated the earlier stimulation of the prefrontal cortex, which failed to evoke the initial hippocampal response. In addition, slow oscillations in the cortex and hippocampus were also shown to be thrown out of synchrony when the nucleus reuniens was inactivated. This shows that slow-wave activity in both these regions can only be coupled if the nucleus reuniens is active. In other words, this nucleus plays a key role in achieving coherence in slow oscillations across these regions.

The scientists conclude that this activity of the nucleus reuniens may be essential to the related slow wave sleep-related consolidation of episodic memory.

Prior research

Earlier studies have shown that during brain active states, rapid constant nerve impulses are produced by the neurons of the nucleus reuniens, without obvious rhythmic or oscillatory characteristics. When the brain changes over to a deactivated state, and especially when slow oscillations occur in the forebrain, the nucleus reuniens neurons too show slow rhythmic activity patterns, synchronizing with the slow waves. This could mean that these neurons process information in different ways depending on the brain state, and also that they plays a role in tracking slow oscillation rhythms. In fact, they may perhaps transmit it from the prefrontal cortex to the hippocampus. The SLM is likely to be involved in this activity as it receives the strongest inputs.

Other studies also show that the nucleus reuniens is involved in the coupling of slow oscillations between these two brain areas, and vice versa, which serves to strengthen synaptic activity between nerve cells in two regions, both of which take part in episodic memory. This could well be how slow oscillations strengthen episodic memory retention and consolidation.

Conclusion

The nucleus reuniens could thus be an information hub controlling the flow of signals between these two regions, and its role in many memory tasks is becoming more widely recognized. When injured, it affects memory tasks in which both areas are required, rather than those which depend on the hippocampus alone. other researchers have also suggested that it plays a role in waking memory as well.

Researcher Brandon Hauer says, “Before this study, we did not know what was responsible for connecting the prefrontal cortex and the hippocampus. This under-studied and relatively unknown brain area likely has a substantial role in forming long-term memories while you sleep.”

Journal reference:

The reuniens nucleus of the thalamus has an essential role in coordinating slow wave activity between neocortex and hippocampus. Brandon E. Hauer, Silvia Pagliardini and Clayton T. Dickson. eNeuro. doi: 10.1523/ENEURO.0365-19.2019. https://www.eneuro.org/content/6/5/ENEURO.0365-19.2019.

Dr. Liji Thomas

Written by

Dr. Liji Thomas

Dr. Liji Thomas is an OB-GYN, who graduated from the Government Medical College, University of Calicut, Kerala, in 2001. Liji practiced as a full-time consultant in obstetrics/gynecology in a private hospital for a few years following her graduation. She has counseled hundreds of patients facing issues from pregnancy-related problems and infertility, and has been in charge of over 2,000 deliveries, striving always to achieve a normal delivery rather than operative.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, Liji. (2019, November 06). Research identifies neural pathway involved in memory consolidation during sleep. News-Medical. Retrieved on November 24, 2024 from https://www.news-medical.net/news/20191106/Research-identifies-neural-pathway-involved-in-memory-consolidation-during-sleep.aspx.

  • MLA

    Thomas, Liji. "Research identifies neural pathway involved in memory consolidation during sleep". News-Medical. 24 November 2024. <https://www.news-medical.net/news/20191106/Research-identifies-neural-pathway-involved-in-memory-consolidation-during-sleep.aspx>.

  • Chicago

    Thomas, Liji. "Research identifies neural pathway involved in memory consolidation during sleep". News-Medical. https://www.news-medical.net/news/20191106/Research-identifies-neural-pathway-involved-in-memory-consolidation-during-sleep.aspx. (accessed November 24, 2024).

  • Harvard

    Thomas, Liji. 2019. Research identifies neural pathway involved in memory consolidation during sleep. News-Medical, viewed 24 November 2024, https://www.news-medical.net/news/20191106/Research-identifies-neural-pathway-involved-in-memory-consolidation-during-sleep.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Antibiotic activity altered by interaction with nanoplastics, new research shows