New wearable sensor for non-invasive gout detection

Biomedical scientists are working hard to create more pain-free methods of disease detection and treatment. A simple blood test is highly informative but arouses intense anxiety in many people. Now a new paper published in the journal Nature Biotechnology on November 25, 2019, reports on a new wearable sensor that can be successfully adapted to mass production, is flexible, and can be used to produce readouts of metabolites and nutrients in the blood based on a sweat analysis.

A laser-engraved, flexible sensor can monitor health conditions through sweat. Image Credit: Caltech
A laser-engraved, flexible sensor can monitor health conditions through sweat. Image Credit: Caltech

Sweat sensors

Prior research has led to the development of many sweat sensors for the detection and measurement of substances present at high concentrations in blood, such as salts, glucose and lactate. Not only are these sensors not able to detect low analyte concentrations, but they also cannot detect multiple analytes simultaneously and their fabrication is typically restricted at large scales.

The current sensor is more sensitive, being able to detect minute levels of selected compounds. Even more important, it can be produced on a large scale with greater ease, increasing its cost-effectiveness.

Such sensors are important because they allow continuous monitoring of patients with chronic diseases that are not immediately dangerous but could potentially lead to life-threatening complications. Some examples are cardiovascular disease, diabetes and kidney disease. In all such conditions, the blood levels of certain nutrients or metabolites change, and being aware of such changes could perhaps help doctors to treat their patients better without having to do repeated blood draws.

The researchers say that sweat sensors could be of great use in detecting molecular changes in blood that reflect altered health. This is done in a quick, painless and ongoing manner, allowing each patient to be observed in a case-relevant manner, speeding up diagnosis and ensuring early intervention.

Microfluidics and sweat sensors

The current study focuses on microfluidics sensor devices. Microfluidics use very minute amounts of liquid that flow through extremely fine channels, narrower than 0.25 mm. These sensors thus use very tiny quantities of sweat, reducing chances of evaporation or contamination and thus promoting accuracy of the results. The device actually acquires measurements of the fresh sweat as it is supplied to and flows through these microchannels and shows how these values change over time.

Microfluidic wearable sensors have mostly been produced using a channel etching technology called lithography-evaporation process. This is both complex and capital-intensive.

However, the current research used laser engraving on graphene to manufacture the sensors. Graphene is a 2D sheet of carbon arranged in the same manner as graphite. Carbon dioxide laser etching on a plastic plate is used to create the sensors as well as the microfluidics channels. This is an extremely common laser that can be used even by DIY crafters at home.

Sensor testing

The researchers chose four parameters to be measured by their sensor – blood levels of tyrosine and uric acid, the heart rate and the respiratory rate. Tyrosine is a marker of certain metabolic diseases, liver disease, eating disorders and disorders of the mind and brain.

High uric acid levels are seen in gout, a painful inflammation of the joints that occurs due to the formation of uric acid crystals. Most commonly found in the joints of the feet, gout can be a disabling condition and is becoming more of a problem worldwide.
The researchers tested the sensors on healthy people as well as in patients. For tyrosine testing, they used two groups: athletes and people of average fitness. Tyrosine levels are affected by fitness levels. The sensors showed, as expected, lower levels in the athletes. Uric acid levels were tested in fasting healthy individuals, and then repeated after they consumed a meal with plenty of purine-rich compounds. Purines are food molecules that give rise to uric acid when they are metabolized. Uric acid levels rose after the meal. When tested in gout patients, the sensor showed uric acid levels that were way higher than in healthy people.

For a more solid proof of accuracy, the researchers also carried out blood tests on these patients as well as healthy controls. They found that the measurements agreed closely, whichever method they used.

Implications

The scientists hope that making such sensitive devices at a low cost will boost their eventual use at home by patients who need to keep watch on health conditions such as gout, diabetes, and cardiovascular diseases. Patients who know exactly how they stand with respect to their health conditions at present could even adjust their medications or their diet as needed to bring about health improvement.

Researcher Wei Gao says, “Considering that abnormal circulating nutrients and metabolites are related to a number of health conditions, the information collected from such wearable sensors will be invaluable for both research and medical treatment.”

Source:
Journal reference:

Yang, Y., Song, Y., Bo, X. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol (2019) doi:10.1038/s41587-019-0321-x, https://www.nature.com/articles/s41587-019-0321-x

Dr. Liji Thomas

Written by

Dr. Liji Thomas

Dr. Liji Thomas is an OB-GYN, who graduated from the Government Medical College, University of Calicut, Kerala, in 2001. Liji practiced as a full-time consultant in obstetrics/gynecology in a private hospital for a few years following her graduation. She has counseled hundreds of patients facing issues from pregnancy-related problems and infertility, and has been in charge of over 2,000 deliveries, striving always to achieve a normal delivery rather than operative.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, Liji. (2019, November 26). New wearable sensor for non-invasive gout detection. News-Medical. Retrieved on December 26, 2024 from https://www.news-medical.net/news/20191126/New-wearable-sensor-for-non-invasive-gout-detection.aspx.

  • MLA

    Thomas, Liji. "New wearable sensor for non-invasive gout detection". News-Medical. 26 December 2024. <https://www.news-medical.net/news/20191126/New-wearable-sensor-for-non-invasive-gout-detection.aspx>.

  • Chicago

    Thomas, Liji. "New wearable sensor for non-invasive gout detection". News-Medical. https://www.news-medical.net/news/20191126/New-wearable-sensor-for-non-invasive-gout-detection.aspx. (accessed December 26, 2024).

  • Harvard

    Thomas, Liji. 2019. New wearable sensor for non-invasive gout detection. News-Medical, viewed 26 December 2024, https://www.news-medical.net/news/20191126/New-wearable-sensor-for-non-invasive-gout-detection.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research uncovers dietary patterns influencing Mediterranean Diet adherence