New wireless, light-activated electrode advances neural stimulation

Neural stimulation is a pioneering technology that can be used to recover function and improve the quality of life for individuals who suffer from brain injury or disease.

It serves an integral role in modern neuroscience research and human neuroprosthetics, including advancements in prosthetic limbs and brain-computer interfaces. A challenge that remains with this technology is achieving long-term and precise stimulation of a specific group of neurons.

Takashi D-Y Kozai, assistant professor of bioengineering at the University of Pittsburgh, recently received a $1,652,844 award from the National Institutes of Health (1R01NS105691-01A1) to develop an innovative solution to address these limitations.

Implantation of these devices causes a reactive tissue response which degrades the functional performance over time, thus limiting device capabilities. Current electrical stimulation implants are tethered to the skull, which leads to mechanical strain in the tissue, and in turn, causes chronic inflammation and increases the possibility of an infection."

Takashi D-Y Kozai, Assistant Professor of Bioengineering, University of Pittsburgh

Kozai, who leads the Bio-Integrating Optoelectric Neural Interface Cybernetics Lab in the Swanson School of Engineering, will use the NIH award to develop a wireless in vivo stimulation technology that will enable precise neural circuit probing while minimizing tissue damage.

In this design, the electrode will be implanted in the brain and activated by light - via the photoelectric effect - with a far-red or infrared laser source, which can sit outside of the brain.

"This use of photostimulation removes the mechanical requirements necessary in traditional microstimulation technology and improves spatial selectivity of activated neurons for stable, long-term electrical stimulation," Kozai said.

His group found that photostimulation drives a more localized population of neurons when compared to electrical stimulation under similar conditions. When used, the activated cells were closer to the electrode, which indicates increased spatial precision.

The proposed technology will be smaller than traditional photovoltaic devices but larger than nanoparticles to improve device longevity.

"With this project, we hope to develop advanced neural probes that are capable of activating specific neurons for long periods of time and with great precision," Kozai said. "This technology could significantly impact neuroscience research and ultimately the treatment of neurological injury and disease in humans."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Brain mapping reveals cell-specific aging patterns