Deep learning model can make dentists' work easier

In order to plan a dental implant operation and the implant size and position, dentists need to know the exact location of the mandibular canal, a canal located in both sides of the lower jaw that contains the alveolar nerve.

The lower jaw is an anatomically complex structure and medical experts use X-ray and computer tomography (CT) models to detect and diagnose such structures. Typically, dentists and radiologists define the location of the mandibular canals manually from the X-ray or CT scans, which makes the task laborious and time-consuming. That is why an automatized way to do this could make their work and placement of dental implants much easier.

To bring a solution to this problem, researchers at the Finnish Center for Artificial Intelligence FCAI, Tampere University Hospital, Planmeca and the Alan Turing Institute developed a new model that accurately and automatically shows the exact location of mandibular canals. The model is based on training and using deep neural networks. The researchers trained the model by using a dataset consisting of 3D cone beam CT (CBCT) scans.

The model is based on a fully convolutional architecture, which makes it as fast and data-efficient as possible. Based on the research results, this type of a deep learning model can localize the mandibular canals highly accurately. It surpasses the statistical shape models, which have thus far been the best, automatized method to localize the mandibular canals.

In simple cases - when the patient does not have any special conditions, such as osteoporosis - the model is as accurate as a human specialist. Most patients that visit a dentist fall into this category. 'In more complex cases, one may need to adjust the estimate, so we are not yet talking about a fully stand-alone system,' says Joel Jaskari, Doctoral Candidate and the first author of the research paper.

Using Artificial Intelligence has another clear advantage, namely the fact that the machine performs the job equally fast and accurately every time.

The aim of this research work is not, however, to replace radiologists but to make their job faster and more efficient so that they will have time to focus on the most complex cases."

Professor Kimmo Kaski

Planmeca, a Finnish company developing, manufacturing and marketing dental equipment, 2D and 3D imaging equipment and software, collaborates with FCAI. The company is currently integrating the presented model into its dedicated software, to be used with Planmeca 3D tomography equipment.

Source:
Journal reference:

Jaskari, J., et al. (2020) Deep Learning Method for Mandibular Canal Segmentation in Dental Cone Beam Computed Tomography Volumes. Scientific Reports. doi.org/10.1038/s41598-020-62321-3.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Patient-derived organoids: Transforming cancer research and personalized medicine