Researchers develop AI algorithm to accurately predict risk for and diagnose Alzheimer's

Researchers have developed a computer algorithm based on Artificial Intelligence (AI) that can accurately predict the risk for and diagnose Alzheimer's disease using a combination of brain magnetic resonance imaging (MRI), testing to measure cognitive impairment, along with data on age and gender.

The AI strategy, based on a deep learning algorithm, is a type of machine learning framework. Machine learning is an AI application that enables a computer to learn from data and improve from experience. Alzheimer's disease is the primary cause of dementia worldwide. One in 10 people age 65 and older has Alzheimer's dementia. It is the sixth-leading cause of death in the United States.

If computers can accurately detect debilitating conditions such as Alzheimer's disease using readily available data such as a brain MRI scan, then such technologies have a wide-reaching potential, especially in resource-limited settings. Not only can we accurately predict the risk of Alzheimer's disease but this algorithm can generate interpretable and intuitive visualizations of individual Alzheimer's disease risk en route to accurate diagnosis."

Vijaya B. Kolachalama, Ph.D., corresponding author, assistant professor of medicine at Boston University School of Medicine (BUSM)

The researchers obtained access to raw MRI scans of the brain, demographics and clinical information of individuals with Alzheimer's disease and the ones with normal cognition from four different national cohorts. Using data from one of these cohorts, they developed a novel deep learning model to predict Alzheimer's disease risk. They then showed that their model could accurately predict the disease status on the other independent cohorts.

An international team of expert neurologists were then asked to perform the task of detecting Alzheimer's disease on the same set of cases. In this head-to-head comparison, the algorithm model performed slightly better than the average neurologist. They also showed that model-identified regions of high disease risk were highly aligned with autopsy reports of the brains on a few individuals who were deceased.

According to the researchers, this study has broad implications for expanding the use of neuroimaging data such as MRI scans to accurately detect the risk of Alzheimer's disease at the point of care. "If we have accurate tools to predict the risk of Alzheimer's disease (such as the one we developed), that are readily available and which can use routinely available data such as a brain MRI scan, then they have the potential to assist clinical practice, especially in memory clinics."

The researcher believe their methodology can be extended to other organs in the body and develop predictive models to diagnose other degenerative diseases.

These findings appear online in the journal Brain.

Source:
Journal reference:

Qiu, S, et al. (2020) Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain. doi.org/10.1093/brain/awaa137.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Artificial intelligence predicts tongue disease with 96 percent accuracy