Qualitative review sheds light on AI development for treatment of brain diseases

The range of AI technologies available for dealing with brain disease is growing fast, and exciting new methods are being applied to brain problems as computer scientists gain a deeper understanding of the capabilities of advanced algorithms. In APL Bioengineering, Italian researchers conducted a systematic literature review to understand the state of the art in the use of AI for brain disease. Their qualitative review sheds light on the most interesting corners of AI development.

Artificial intelligence is lauded for its ability to solve problems humans cannot, thanks to novel computing architectures that process large amounts of complex data quickly. As a result, AI methods, such as machine learning, computer vision, and neural networks, are applied to some of the most difficult problems in science and society.

One tough problem is the diagnosis, surgical treatment, and monitoring of brain diseases. The range of AI technologies available for dealing with brain disease is growing fast, and exciting new methods are being applied to brain problems as computer scientists gain a deeper understanding of the capabilities of advanced algorithms.

In a paper published this week in APL Bioengineering, by AIP Publishing, Italian researchers conducted a systematic literature review to understand the state of the art in the use of AI for brain disease. Their search yielded 2,696 results, and they narrowed their focus to the top 154 most cited papers and took a closer look.

Their qualitative review sheds light on the most interesting corners of AI development. For example, a generative adversarial network was used to synthetically create an aged brain in order to see how disease advances over time.

The use of artificial intelligence techniques is gradually bringing efficient theoretical solutions to a large number of real-world clinical problems related to the brain. Especially in recent years, thanks to the accumulation of relevant data and the development of increasingly effective algorithms, it has been possible to significantly increase the understanding of complex brain mechanisms."

Alice Segato, Author

The authors' analysis covers eight paradigms of brain care, examining AI methods used to process information about structure and connectivity characteristics of the brain and in assessing surgical candidacy, identifying problem areas, predicting disease trajectory, and for intraoperative assistance. Image data used to study brain disease, including 3D data, such as magnetic resonance imaging, diffusion tensor imaging, positron emission tomography, and computed tomography imaging, can be analyzed using computer vision AI techniques.

But the authors urge caution, noting the importance of "explainable algorithms" with paths to solutions that are clearly delineated, not a "black box" -- the term for AI that reaches an accurate solution but relies on inner workings that are little understood or invisible.

"If humans are to accept algorithmic prescriptions or diagnosis, they need to trust them," Segato said. "Researchers' efforts are leading to the creation of increasingly sophisticated and interpretable algorithms, which could favor a more intensive use of 'intelligent' technologies in practical clinical contexts."

Source:
Journal reference:

Segato, A., et al. (2020) Artificial intelligence for brain diseases: A systematic review. APL Bioengineering. doi.org/10.1063/5.0011697.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Pregnancy triggers profound brain changes, enhancing maternal instincts and mental health