NUS researchers develop high sensitivity, low hysteresis pressure sensor

Real-time health monitoring and sensing abilities of robots require soft electronics, but a challenge of using such materials lie in their reliability. Unlike rigid devices, being elastic and pliable makes their performance less repeatable. The variation in reliability is known as hysteresis.

Guided by the theory of contact mechanics, a team of researchers from the National University of Singapore (NUS) came up with a new sensor material that has significantly less hysteresis. This ability enables more accurate wearable health technology and robotic sensing.

The research team, led by Assistant Professor Benjamin Tee from the Institute for Health Innovation & Technology at NUS, published their results in the prestigious journal Proceedings of the National Academy of Sciences on 28 September 2020.

High sensitivity, low hysteresis pressure sensor

When soft materials are used as compressive sensors, they usually face severe hysteresis issues. The soft sensor's material properties can change in between repeated touches, which affects the reliability of the data. This makes it challenging to get accurate readouts every time, limiting the sensors' possible applications.

The NUS team's breakthrough is the invention of a material which has high sensitivity, but with an almost hysteresis-free performance. They developed a process to crack metal thin films into desirable ring-shaped patterns on a flexible material called polydimethylsiloxane (PDMS).

The team integrated this metal/PDMS film with electrodes and substrates for a piezoresistive sensor and characterized its performance. They conducted repeated mechanical testing, and verified that their design innovation improved sensor performance. Their invention, named Tactile Resistive Annularly Cracked E-Skin, or TRACE, is five times better than conventional soft materials.

With our unique design, we were able to achieve significantly improved accuracy and reliability. The TRACE sensor could potentially could be used in robotics to perceive surface texture or in wearable health technology devices, for example to measure blood flow in superficial arteries for health monitoring applications."

Asst Prof Benjamin Tee, NUS Department of Materials Science and Engineering

Next steps

The next step for the NUS team is to further improve the conformability of their material for different wearable applications, and to develop artificial intelligence (AI) applications based on the sensors.

"Our long-term goal is to predict cardiovascular health in the form of a tiny smart patch that is placed on human skin. This TRACE sensor is a step forward towards that reality because the data it can capture for pulse velocities is more accurate, and can also be equipped with machine learning algorithms to predict surface textures more accurately," explained Asst Prof Tee.

Other applications the NUS team aims to develop include uses in prosthetics, where having a reliable skin interface allows for a more intelligent response.

Source:
Journal reference:

Yao, H., et al. (2020) Near–hysteresis-free soft tactile electronic skins for wearables and reliable machine learning. PNAS. doi.org/10.1073/pnas.2010989117.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Key kinase involved in cell division linked to abnormal blood vessel growth in genetic disorder