Study shows how alcohol may affect the brain, offers potential treatments for alcohol misuse

The slurred speech, poor coordination, and sedative effects of drinking too much alcohol may actually be caused by the breakdown of alcohol products produced in the brain, not in the liver as scientists currently think.

That is the finding of a new study led by researchers from the University of Maryland School of Medicine (UMSOM) and the National Institute on Alcohol Abuse and Alcoholism. It was published recently in the journal Nature Metabolism and provides new insights into how alcohol may affect the brain and the potential for new treatments to treat alcohol misuse.

It is well known that the liver is the major organ that metabolizes alcohol, using the enzyme alcohol dehydrogenase to convert alcohol into a compound called acetaldehyde. Acetaldehyde, which has toxic effects, is quickly broken down into a more benign substance called acetate. This occurs through a different enzyme called acetaldehyde dehydrogenase 2 (ALDH2).

Until now, alcohol and acetaldehyde, produced by the liver, have been considered important players in triggering the cognitive impairment associated with imbibing. Acetate, on the other hand, was considered relatively unimportant in producing effects like motor impairment, confusion, and slurred speech. Researchers also did not know which brain region or particular brain cells were most important for alcohol metabolism.

To learn more about the role played by the brain in alcohol metabolism, the researchers measured the distribution of ALDH2 enzyme in the cerebellum, using magnetic resonance (MR) scanners in both mice and in human tissue. They observed that ALDH2 was expressed in the cerebellum, in a type of nerve cell called an astrocyte, in both human brain tissue and in living mice.

The researchers found that this enzyme controlled the conversion of acetaldehyde into acetate in the brain. They also found alcohol-induced cellular and behavioral effects in specific regions of the brain where this enzyme was expressed. Acetate was found to interact with the brain messenger chemical called GABA, which is known to decrease activity in the nervous system. This decreased activity can lead to drowsiness, impair coordination, and lower normal feelings of inhibition.

We found ALDH2 was expressed in cells known as astrocytes in the cerebellum, a brain region that controls balance and motor coordination. We also found that when ALDH2 was removed from these cells, the mice were resistant to motor impairment inducted by alcohol consumption."

Qi Cao, PhD, Assistant Professor of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland

Su Xu, PhDHe and his team also found the enzyme ALDH2 in other brain regions responsible for emotional regulation and decision-making (both impaired by excess alcohol consumption), including in the hippocampus, amydala, and prefrontal cortex.

These findings suggest that certain brain regions are important for alcohol metabolism and that abnormalities in the enzyme production in these brain regions can lead to detrimental effects associated with alcohol misuse. They also suggest that acetate produced in the brain and in the liver differ in their ability to affect motor and cognitive function.

"Our next step is to determine whether these mechanisms observed in mice also exist in people," said Dr. Cao. "We would like to know whether alcohol metabolism is directly regulated in the human brain. If further research confirms this to be the case, it could lead to potential new targets for treating alcohol use disorder.

Source:
Journal reference:

Jin, S., et al. (2021) Brain ethanol metabolism by astrocytic ALDH2 drives the behavioural effects of ethanol intoxication. Nature Metabolism. doi.org/10.1038/s42255-021-00357-z.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Camouflage detection boosts neural networks for brain tumor diagnosis