Study paves the way for developing new treatments to fight gonorrhea superbug

Sexually transmitted infection (STI) gonorrhea is on the rise as a major public health burden worldwide, with around 87 million new infections a year largely caused by the superbug Neisseria gonorrhoeae which experts fear will soon be untreatable.

Study paves the way for developing new treatments to fight gonorrhea superbug
Flinders University Professor of Microbiology Melissa Brown at her laboratory at Flinders University, South Australia. Image Credit: Flinders University

In a new paper, published in mBio, scientists at Flinders University and the Australian National University have analyzed the prime mechanism for antimicrobial resistance in this crafty organism – paving the way for further developments in treatment options.

“Antimicrobial resistance in Neisseria gonorrhoeae has reached an alarming level,” says lead author Flinders University Professor of Microbiology Melissa Brown.

The World Health Organization has ranked N. gonorrhoeae as one of 12 antimicrobial resistant bacterial species that poses the greatest risk to human health, motivating medical researchers around the world to pursue alternative treatments.

We need to find the strengths and weaknesses in these species and in this study we have focused on the manner by which drugs are pumped out of these cells which helps the superbug become more resistant and able to survive treatment by multiple drugs. Such treatment failures subsequently lead to increased medical costs and a decrease in human general and reproductive health.”

Melissa Brown, Professor of Microbiology, Flinders University

Together with ANU colleagues led by Associate Professor Megan O’Mara, the Australian research team has identified a region unique to the drug pump that plays a role in positioning the protein in the surface of the bacteria enabling it to function optimally.

“This could be a future target for antibiotic or antimicrobial development,” says first author on the new paper Mohsen Chitsaz, whose PhD study at Flinders University is supported by an Australian Government Research Training Program Scholarship.

The paper, A unique sequence is essential for efficient multidrug efflux function of the MtrD protein of Neisseria gonorrhoeae (2021) by Mohsen Chitsaz, Vrinda Gupta, Benjamin Harris, Megan L O’Mara and Melissa H Brown has been published in mBio (American Society for Microbiology) DOI: 10.1128/mBio.01675-21

Acknowledgements: This study was supported by a Flinders Medical Research Foundation Grant and was undertaken using resources from the National Computational Infrastructure (NCI) which is supported by the Australian Government.

Source:
Journal reference:

Chitsaz, M., et al. (2021) A unique sequence is essential for efficient multidrug efflux function of the MtrD protein of Neisseria gonorrhoeae. mBio. doi.org/10.1128/mBio.01675-21.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
A promising new strategy for malaria drug development