Study casts light on how to combine antibiotics and phage therapy to fight bacterial infection

*Important notice: Cell Press publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

New research has moved a step closer to harnessing viruses to fight bacterial infection, reducing the threat of antibiotic resistance.

A growing number of infections, including pneumonia, tuberculosis, gonorrhea, and salmonellosis, are developing antibiotic resistance, which means they becoming harder to treat, resulting in higher death rates, longer hospital stays and higher costs.

Phage therapy is the concept of using viruses (known as phage) that are harmless to humans to kill bacteria. Phage therapy can be used in combination with antibiotics to cure infections more effectively, and reduce the opportunity for bacteria to develop antibiotic resistance. However, bacteria can also evolve resistance to phages.

The new study by the University of Exeter, published in Cell Host Microbe, has cast new light on how to best combine antibiotics and phage therapy. Researchers conducted laboratory experiments on Pseudomonas aeruginosa a bacterium which causes disease in immunocompromised and cystic fibrosis patients. They exposed the bacterium to eight types of antibiotics – and found differences in the mechanisms by which the bacteria evolve resistance to phages, which affect how harmful they are.

Viruses penetrate molecules on the cell surface to infect bacteria. Like the human immune system, bacteria have their own CRISPR defense system, made up of proteins that fight off infection. As in human immune responses, this means that the virus infects the bacteria, and is then killed. In the process, the bacteria's CRISPR system learns to recognize and attack the virus in future.

However, the bacteria have a second defense option. They can also change their own cell surface to ward off infection, losing the receptor to which phages normally attach. This option comes with a cost to bacteria - the bacteria become less virulent, meaning they no longer cause disease, or the disease becomes less severe.

In the study, four of the eight antibiotics tested caused a dramatic increase in the levels of CRISPR-based immunity. These antibiotics are all bacteriostatic – they do not directly kill cells but act by slowing down cell growth.

Antibiotic resistance is a major public health issue, and we need to take swift and urgent action. Phage therapy could be an important part of the toolkit, in reducing antibiotic use, and in using them in combination to increase their efficiency. We found that by changing the type of antibiotics that are used in combination with phage, we can manipulate how bacteria evolve phage resistance, increasing the chances that treatment is effective. These effects should be considered during phage-antibiotic combination therapy, given their important consequences for pathogen virulence."

Professor Edze Westra, University of Exeter

Phage therapy was first used in 1919, when Parisian microbiologist Félix d'Hérelle gave a phage cocktail to a 12-year-old boy, apparently curing his severe dysentery. Yet despite early promise, research dried up in the 40s as the world began to adopt the quick medical fix of antibiotics.

Now, research is again gathering momentum as part of the solution to reduce antibiotic resistance. Although a promising alternative with some remarkable case studies of phage therapy working in individuals, one obstacle to wider use is that bacteria can rapidly evolve resistance to phages, via CRISPR-Cas immunity or via modification of their surface.

The researchers show that the effect of bacteriostatic antibiotics triggering CRISPR-Cas immunity results from slower phage replication inside the cell, which provides more time for the CRISPR-Cas system to acquire immunity and clear the phage infection. The research therefore identifies the speed of phage replication as a crucial factor controlling the possibility for CRISPR-Cas systems to defend against viruses.

Lead author Dr Tatiana Dimitiru, of the University of Exeter, said: This study provides fundamental insight into the constraints of CRISPR immune systems in the face of viruses. It was recently discovered that many CRISPR-Cas immune systems are associated to cell responses that make bacteria slow or stop growth upon phage infection, and we speculate that this may be important for cells to trigger an effective immune response.

This research was funded through grants from the European Research Council under the European Union's Horizon 2020 research and innovation programme.

*Important notice: Cell Press publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Source:
Journal reference:
  • Preliminary scientific report. University

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Eating more fiber supports growth of good bacteria and protects against gut infections