Brain MRIs and genetics may be used to predict the chances of developing Alzheimer's disease

Simon Fraser University researchers are studying how a combination of genetics and brain MRIs may be used to predict the chances of developing Alzheimer's disease in the future.

In a newly published study, researchers from SFU's Functional and Anatomical Imaging & Shape Analysis Lab (FAISAL) identified distinct properties of brain MRIs and genetics that impact the prediction of Dementia of Alzheimer's Type, or DAT, for patients at various stages of the disease, then developed a biomarker that can help predict future conversion to DAT.

Our findings reveal that while genetic features have lower predictive power than MRI features, combining both modalities can improve the performance in predicting the future conversion to DAT."

Ghazal Mirabnahrazam, study lead author, research assistant currently completing a master's degree in engineering science at SFU

Dementia scores based on genetic data were shown to better predict future DAT progression in currently normal patients who will develop DAT at a later time, while MRI data, which reflects anatomical changes in the brain, was shown to better predict future DAT in those with mild cognitive impairment.

"In a clinical setting, clinicians can use our model to predict a quantitative score indicating the similarity between a subject's observed patterns based on MRI and genetic data at the time of clinical visit and DAT patterns," says senior author Mirza Faisal Beg, a professor in SFU's School of Engineering Science.

"This is extremely useful, specifically at the MCI (mild cognitively impaired) stage in identifying those who will progress to DAT in the future. Being able to accurately estimate the chance of future conversion to DAT using only baseline information is extremely valuable because it provides practitioners with deep insight and enough time to plan appropriate care for each patient based on their probability of developing Alzheimer's disease.

"Furthermore, it can provide potentially critical information for drug trials and the development of preventative measures," adds Beg. "This information can aid in the selection of the appropriate cohort of patients for clinical trials, which can lead to a more promising outcome."

Source:
Journal reference:

Mirabnahrazam, G., et al. (2022) Machine Learning Based Multimodal Neuroimaging Genomics Dementia Score for Predicting Future Conversion to Alzheimer's Disease. Journal of Alzheimer s Disease. doi.org/10.3233/JAD-220021.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New insights into brain aging and Alzheimer's from non-human primates