Antibiotic exposure in early childhood linked to later development of asthma and allergies

Early exposure to antibiotics kills healthy bacteria in the digestive tract and can cause asthma and allergies, a new study demonstrates.

The study, published in Mucosal Immunology, has provided the strongest evidence so far that the long-observed connection between antibiotic exposure in early childhood and later development of asthma and allergies is causal.

The practical implication is simple: Avoid antibiotic use in young children whenever you can because it may elevate the risk of significant, long-term problems with allergy and/or asthma."

Martin Blaser, senior author, director of the Center for Advanced Biotechnology and Medicine at Rutgers

In the study, the researchers, who came from Rutgers, New York University and the University of Zurich, noted that antibiotics, "among the most used medications in children, affect gut microbiome communities and metabolic functions. These changes in microbiota structure can impact host immunity."

In the first part of the experiment, five-day-old mice received water, azithromycin or amoxicillin. After the mice matured, researchers exposed them to a common allergen derived from house dust mites. Mice that had received either of the antibiotics, especially azithromycin, exhibited elevated rates of immune responses -; i.e., allergies.

The second and third parts of the experiment tested the hypothesis that early exposure to antibiotics (but not later exposure) causes allergies and asthma by killing some healthy gut bacteria that support proper immune system development.

Lead author Timothy Borbet first transferred bacteria-rich fecal samples from the first set of mice to a second set of adult mice with no previous exposure to any bacteria or germs. Some received samples from mice given azithromycin or amoxicillin in infancy. Others received normal samples from mice that had received water.

Mice that received antibiotic-altered samples were no more likely than other mice to develop immune responses to house dust mites, just as people who receive antibiotics in adulthood are no more likely to develop asthma or allergies than those who don't.

Things were different, however, for the next generation. Offspring of mice that received antibiotic-altered samples reacted more to house dust mites than those whose parents received samples unaltered by antibiotics, just as mice that originally received antibiotics as babies reacted more to the allergen than those that received water.

"This was a carefully controlled experiment," said Blaser. "The only variable in the first part was antibiotic exposure. The only variable in the second two parts was whether the mixture of gut bacteria had been affected by antibiotics. Everything else about the mice was identical.

Blaser added that "these experiments provide strong evidence that antibiotics cause unwanted immune responses to develop via their effect on gut bacteria, but only if gut bacteria are altered in early childhood."

Source:
Journal reference:

Borbet, T.C., et al. (2022) Influence of the early-life gut microbiota on the immune responses to an inhaled allergen. Mucosal Immunology. doi.org/10.1038/s41385-022-00544-5.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Nasal fungi differ in people with allergies and asthma