Duke receives $12 million federal grant to develop artificial intelligence tools for detecting autism

The Duke Center for Autism and Brain Development has been awarded a $12 million federal grant to develop artificial intelligence tools for detecting autism during infancy and identifying brain-based biomarkers of autism.

The grant, from the National Institute of Child Health and Human Development, extends the Duke Autism Center of Excellence research program for an additional 5 years.

Geraldine Dawson, Ph.D., director of the Duke Center for Autism and Brain Development and professor of psychiatry and behavioral sciences, will lead a team of researchers that includes Duke faculty from psychiatry, pediatrics, biostatistics and bioinformatics, computer and electrical engineering, and civil and environmental engineering.

We are thrilled to receive this award, which allows Duke to remain at the forefront of autism research. Our goal is to use advanced computational techniques to develop better methods for autism screening that will reduce known disparities in access to early diagnosis and intervention."

Geraldine Dawson, Ph.D., director of the Duke Center for Autism and Brain Development and professor of psychiatry and behavioral sciences

In a project led by Dawson and Guillermo Sapiro, Ph.D., professor of electrical and computer engineering, researchers will test a digital app, used by parents at home on a smart phone, to videotape young children's behavior and interactions with their caregivers. Artificial intelligence will automatically code the videotapes to identify behavioral characteristics of infants and toddlers who are later diagnosed with autism and track their development.

A second project, led by Benjamin Goldstein, Ph.D., associate professor of biostatistics and bioinformatics, and Gary Maslow, M.D., associate professor of psychiatry and behavioral sciences, will use artificial intelligence to analyze 260,000 health insurance claims, including those from 6,000 children diagnosed with autism, from birth to 18 months.

That data will be used to develop an algorithm to predict autism during infancy and identify the nature of early medical conditions associated with a later diagnosis of autism. Based on the algorithm, a team led by Lauren Franz, M.D., assistant professor of psychiatry and behavioral sciences, will develop support tools to help primary care providers screen and guide patients.

The third project, led by Kimberly Carpenter, Ph.D., assistant professor of psychiatry and behavioral sciences, and David Carlson, Ph.D., assistant professor of civil and environmental engineering, will use artificial intelligence to monitor brain wave activity, which is synchronized with videotaped behavior of three- to six-year-old children diagnosed with autism. The data will be used to identify brain networks associated with behaviors characteristic of autism.

The Duke Center for Autism and Brain Development has been an NIH Autism Center of Excellence since 2017. It is part of a trans-NIH initiative that supports large-scale studies on autism spectrum disorders with the goal of determining autism's causes and potential therapies.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study highlights air pollution as key environmental factor in autism risk