Mouse model reveals link between GABA receptors and sleepiness in people with myotonic dystrophy

People with the inherited disorder myotonic dystrophy (DM) often experience excessive daytime sleepiness and fatigue, as well as altered responses to anesthetics that can put them at risk for complications when hospitalized.

Emory researchers, in collaboration with colleagues at Columbia and University of Florida, now have evidence from a mouse model of DM's central nervous system symptoms, indicating a link to the inhibitor neurotransmitter GABA -; and a potential remedy.

The results are published in eNeuro.

Problems with sleep and anesthetic responses are two major concerns for people with myotonic dystrophy. The behavioral, pharmacologic and molecular alterations we've uncovered help us understand where those aspects of the disorder come from."

Gary Bassell, PhD, Chair of Cell Biology, Emory University School of Medicine

The lead author of the paper is Kamyra Edokpolor, PhD, a former Emory graduate student, with contributions from anesthesiologist Paul Garcia's lab at Columbia and neurogeneticist Eric Wang's lab at University of Florida.

The eNeuro paper describes how the DM model mice have enhanced sensitivity to GABA. They display a stronger response to benzodiazepines, a class of anti-anxiety and anti-insomnia drugs that act through GABA. Additional findings suggest that drugs that counteract benzodiazepines, such as the repurposed antidote flumazenil, might work against DM's prolonged sleep and daytime sleepiness.

"The acute effects of flumazenil were recently tested in a small-scale clinical trial in people with DM, but our results suggest that that study needs to be revisited," Wang says. "Specifically, the wake-promoting effects of flumazenil in DM may be taking place on a more extended timescale than previously investigated."

DM is known as a muscle disease, but it affects the entire body. In addition to classic symptoms of myotonia (difficulty relaxing a contracted muscle) and muscle weakness or wasting, people with DM also often have cardiac or gastrointestinal problems, and many report both long sleep times and drowsiness or attention problems during the day.

DM is caused by abnormally expanded DNA repeats; in type 1, three letters of the genetic code (CTG) are repeated over and over dozens of times, and in type 2, four letters (CCTG) are repeated. The repeats are longer in people with myotonic dystrophy than in healthy controls; age of onset and severity vary with the length of the repeat. The expanded repeats, inserted at one of two locations in the genome, interfere with cells' ability to express many genes. They distort the process of RNA splicing in muscle and other tissues, leading to DM's array of symptoms.

In the paper, researchers wanted to focus on the nervous system, so they used mice with a knockout of the gene Muscleblind-like 2 (MBNL2). MBNL2 is part of a group of RNA binding proteins, which scientists think are diverted by RNA produced by the expanded repeats. MBNL2 expression is stronger in the brain than in other tissues. Thus, MBNL2 knockout mice do not have muscle problems, but they appear to recapitulate DM's central nervous system symptoms.

The researchers exposed the MBNL2-knockout mice to the anesthetic sevoflurane, the benzodiazepine diazepam (Valium), or the benzodiazepine-like drug zolpidem (Ambien).

"All of these drugs target GABA-A receptors, and we had some clues that these receptors might be affected in DM, because of years of reports on post-operative anesthesia complications," says Edokpolor.

Compared with controls, the MBNL2-knockout mice exhibited delayed recovery after sevoflurane-induced anesthesia, delayed emergence and recovery from zolpidem-induced sleep, and a stronger response to diazepam.

As a potential explanation for the increased GABA sensitivity, researchers were able to show that MBNL2 knockout mice display altered RNA splicing of a gene encoding a GABA-A receptor subunit (gamma 2). The splicing patterns for genes encoding other GABA-A receptor subunits were not affected. For gamma 2, the altered splicing pattern means that a shorter form of the protein is produced. The shorter form is more sensitive to benzodiazepines and has greater tonic, or constant, activity. This means that sleep-promoting signals induced by GABA could be over-active in DM.

Compared with control mice, MBNL2-knockout mice spent more time immobile and presumably sleeping during the day, when mice usually sleep. However, when administered flumazenil, the MBNL2knockout mice spent less time sleeping, with the effect becoming stronger after 3 or 4 hours. Immobility time was reduced by about 20 percent after 3 hours.The wake-promoting effect contrasted with control mice, which displayed immobility for more time when given flumazenil.

Flumazenil was discovered at Hoffmann La Roche in the 1970s, and was approved in 1992 by the FDA as a countermeasure for benzodiazepine overdose -; the same year that the mutation for myotonic dystrophy type 1 was mapped. When used as an antidote, the drug is thought to displace benzodiazepines from their GABA receptor binding sites in the brain. The drug is not approved for other indications.

The authors became interested in flumazenil because starting in 2013, Emory sleep researchers David Rye and Lynn Marie Trotti repurposed the drug as an "off label" wake-promoting agent for sleep disorders, including idiopathic hypersomnia. Investigators subsequently learned that a few patients with DM also experienced benefits, leading to a clinical study of flumazenil, sponsored by the company Expansion Therapeutics. In that study, the 12 participants did not report wake-promoting effects, but efficacy was primarily assessed after intravenous dosing for up to 2 hours.

The research was supported by the National Institute of Neurological Disorders and Stroke (R01NS112291) and the Myotonic Dystrophy Foundation. Flumazenil was provided by Expansion Therapeutics. A patent on the use of GABA-A receptor antagonists for myotonic dystrophy is held by Bassell and Wang, so they could potentially benefit from future commercialization.

Source:
Journal reference:

Edokpolor, K.S., et al. (2022) Altered behavioral responses show GABA sensitivity in Muscleblind-like 2 deficient mice: Implications for CNS symptoms in myotonic dystrophy. eNeuro. doi.org/10.1523/ENEURO.0218-22.2022.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Brain mapping reveals cell-specific aging patterns