Non-invasive breath analysis could improve treatment of malignant pleural mesothelioma

Identifying and analyzing volatile organic compounds in exhaled breath of patients with malignant pleural mesothelioma showed promise as a screening method for MPM, according to research presented today at the International Association for the Study of Lung Cancer (IASLC) 2023 World Conference on Lung Cancer in Singapore.

Malignant pleural mesothelioma (MPM) is a challenging disease with limited treatment options and a poor prognosis. To improve treatment outcomes and tailor therapies for individual patients, researchers have been exploring predictive markers. Recently, volatile organic compounds (VOCs) in exhaled breath have emerged as potential non-invasive markers for disease.

Kevin Lamote, PhD, from the University of Antwerp, Belgium, and colleagues conducted a study aimed to investigate whether exhaled breath analysis could differentiate treatment responders from non-responders (discriminative setup) and, if successful, predict treatment outcomes earlier (predictive setup) using VOCs as predictive biomarkers.

Dr. Lamote and his team examined 13 patients with MPM and subjected them to a CT scan before and every three months after treatment, with treatment responses scored as stable (SD) or progressive (PD) based on mRECIST criteria. Breath and background samples were collected from the patients at each time point using multi-capillary column-ion mobility spectrometry (MCC-IMS) to characterize VOCs. A lasso regression was performed to identify VOCs that could differentiate between responders and non-responders after treatment. Additionally, a predictive model was trained to forecast treatment outcomes based on associated breath samples from previous study visits.

The study demonstrated an 89% accuracy (95% CI: 67.9-98.1) in distinguishing between SD and PD patients during follow-up. Equally promising, the predictive model achieved the same level of accuracy at baseline in predicting treatment outcomes. Notably, there were no significant differences in treatment approaches between SD and PD patients, suggesting that the selected VOCs may be involved in general mechanisms or correlated with the tumor microenvironment rather than being treatment-specific.

The identification of VOCs in exhaled breath represents a promising opportunity for non-invasive detection and prediction of treatment outcomes in MPM patients. However, to further validate the utility of the VOC profile, larger population studies are required. Fine-tuning the VOC profile for each treatment could also help predict which patients are most likely to benefit from specific therapies, ultimately leading to improved overall treatment regimens for MPM."

Kevin Lamote, PhD, from the University of Antwerp, Belgium

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study shows cannabis as a genotoxic substance with cancer risks