Research potentially expands options for patients with aggressive childhood cancer

Research is shedding light and potentially expanding options for patients living with Medulloblastoma, an aggressive childhood cancer.

Medulloblastoma is a cancer impacting both very young and school-aged children.

When children get this type of brain tumor, they experience the process of the tumor blocking flow of fluid around the brain.

This can cause severe headaches, vomiting, sleepiness, fussiness, and difficulty walking and coordinating movements.

Treatment is intense, involving high dose chemotherapy, surgery, and sometimes radiation or stem cell transplants.

During these months long treatments, children may lose hair, lose weight, be unable to eat and experience lots of upset stomachs.

Medulloblastoma is also a complex disease with many different genetic causes, making a one-size-fits-all approach to treatment impossible.

Unfortunately, many patients with certain forms of medulloblastoma do not respond well to treatment. This research is critical in helping us begin to understand how medulloblastoma works on a genetic and cellular level so that patients can be treated, and new therapies can be developed, accordingly."

John Prensner, M.D., Ph.D., Assistant Professor of Pediatrics and Biological Chemistry and one of the study's senior authors

The research

Prensner's group paired up with the team of Sebastiaan van Heesch, Ph.D., research group leader at the Princess Máxima Center for pediatric oncology in the Netherlands, to examine several groups of patients, some of which experienced the most aggressive form of the cancer and had the poorest outcomes.

Many of those patients had biological and genetic factors that exacerbated their cancers, including the cancer gene MYC.

Prensner's team and their collaborators took a new hypothesis on how MYC might be functioning and how that might be implicated in cancer.

"The twist that we put on it is to ask the question, what if this MYC is doing important functions outside of what we know to be genes in these cancer cells?" Prensner said.

Damon Hofman, a Ph.D. student in the Van Heesch group at the Princess Máxima Center and one of the first authors of the study, added: "For the first time, we identified and studied the role of essential microproteins in medulloblastoma.

"The micro-protein ASNSD1-uORF appeared to be essential for MYC cancer cells. The fact that these previously overlooked tiny proteins are so important for the survival of this kind of cancer cell is fascinating and underscores the importance of expanding research into other childhood cancers."

With further understanding of MYC and other genetic, biological, and cellular factors, providers can then learn how to intervene with these cancers.

Furthermore, the research could support development of therapeutics that could target the molecular process allowing cancer cells to grow.

This study may be newer, but Prensner's interest in medulloblastoma is not.

His experience began early when he was a medical student; he was moved by the patients he met who were living with the tumor.

"I've never forgotten, not just the patients, but the families. That's why it's been so important to me to try to use the interests and training that I have in the scientific fields to think about how we can really unlock new areas of understanding about this disease to get these patients better choices," he said.

Source:
Journal reference:

Hofman, D. A., et al. (2024). Translation of non-canonical open reading frames as a cancer cell survival mechanism in childhood medulloblastoma. Molecular Cell. doi.org/10.1016/j.molcel.2023.12.003.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Innovative urine test could improve pancreatic cancer survival rates