Scientists develop an mRNA technology approach to target Alzheimer’s disease

Scientists at The Florey have developed an mRNA technology approach to target the toxic protein tau, which builds up in patients with Alzheimer's disease and other dementias. 

To date, mRNA has been predominantly used for vaccines, including those used to fight COVID-19. 

New research published today in Brain Communications establishes The Florey as a key player in the mRNA field, with Dr Rebecca Nisbet taking the technology in a new direction. 

This is the first time mRNA has been explored for use in Alzheimer's disease. Our work in cell models demonstrates that this technology can serve purposes other than vaccine development." 

Dr. Rebecca Nisbet

She likened mRNA to an instruction manual for cells. 

"Once delivered to the cell, the cell reads the mRNA and makes an antibody." 

The Florey team used mRNA to instruct cells in cell models to create RNJ1, an antibody Dr Nisbet developed to target tau, a protein that clumps in the brain cells of dementia patients. 

"This is the first time, to our knowledge, a tau antibody has been able to directly engage tau within the cell." 

First author on the paper, PhD student Patricia Wongsodirdjo said: "Our technique can be applied to any therapeutic antibody, and we envision that this strategy, when combined with nanoparticle packaging, will enhance targeting of toxic molecules in the brain and improve patient outcomes compared to conventional strategies." 

Dr Nisbet said RNJ1 still needed further research. 

She said emerging Alzheimer's treatments, such as lecanemab, which is approved in the USA and under consideration in Australia, are promising but expensive to make and are not an efficient way of getting an active antibody into brain cells. 

"With conventional antibodies, such as lecanemab, the small amount of antibody that does enter the brain can remove some harmful plaque that lies outside our brain cells but can't access toxic proteins such as tau, which is located in our brain cells," Dr Nisbet said. 

Source:
Journal reference:

Wongsodirdjo, P., et al. (2024). mRNA encoded antibody approach for targeting extracellular and intracellular tau. Brain Communications. doi.org/10.1093/braincomms/fcae100.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New CAR T-cell therapy shows promise against aggressive HER2+ breast cancer