Human infants use the 'helpless' period to pre-train, learn powerful foundation models

Babies' brains are not as immature as previously thought, rather they are using the period of postnatal 'helplessness' to learn powerful foundation models similar to those underpinning generative Artificial Intelligence, according to a new study. 

The study, led by a Trinity College Dublin neuroscientist and just published in the journal Trends in Cognitive Sciences, finds for the first time that the classic explanation for infant helplessness is not supported by modern brain data. 

Compared to many animals, humans are helpless for a long time after birth. Many animals, such as horses and chickens, can walk on the day they are born. This protracted period of helplessness puts human infants at risk and places a huge burden on the parents, but surprisingly has survived evolutionary pressure. 

Since the 1960s scientists have thought that the helplessness exhibited by human babies is due to the constraints of birth. The belief was that with big heads human babies have to be born early, resulting in immature brains and a helpless period that extends up to one year of age. We wanted to find out why human babies were helpless for such a long period," explains

Rhodri Cusack, Professor of Cognitive Neuroscience, and lead author of the paper 

The research team comprised Prof. Cusack, who measures development of the infant brain and mind using neuroimaging; Prof. Christine Charvet, Auburn University, USA, who compares brain development across species; and Dr. Marc'Aurelio Ranzato, a senior AI researcher at DeepMind. 

"Our study compared brain development across animal species. It drew from a long-standing project, Translating Time, that equates corresponding ages across species to establish that human brains are more mature than many other species at birth," says Prof. Charvet. 

The researchers used brain imaging and found that many systems in the human infant's brain are already functioning and processing the rich streams of information from the senses. This contradicts the long-held belief that many infant brain systems are too immature to function. 

The team then compared learning in humans with the latest machine learning models, where deep neural networks benefit from a 'helpless' period of pre-training. 

In the past, AI models were directly trained on tasks for which they were needed for example a self-driving car was trained to recognise what they see on a road. But now models are initially pre-trained to see patterns within vast quantities of data, without performing any task of importance. The resulting foundation model is subsequently used to learn specific tasks. It has been found this ultimately leads to quicker learning of new tasks and better performance. 

"We propose that human infants similarly use the 'helpless' period in infancy to pre-train, learning powerful foundation models, which go on to underpin cognition in later life with high performance and rapid generalisation. This is very similar to the powerful machine learning models that have led to the big breakthroughs in generative AI in recent years, such as OpenAI's ChatGPT or Google's Gemini," Prof. Cusack explained. 

The researchers say that future research on how babies learn could well inspire the next generation of AI models. 

"Although there have been big breakthroughs in AI, foundation models consume vast quantities of energy and require vastly more data than babies. Understanding how babies learn may inspire the next generation of AI models. The next steps in research would be to directly compare learning in brains and AI," he concluded. 

Source:
Journal reference:

Cusack, R., et al. (2024) Helpless infants are learning a foundation modelTrends in Cognitive Sciences. doi.org/10.1016/j.tics.2024.05.001.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
The X factor: Decoding brain aging differences between men and women