New tech aims to create marbling in plant-based meat

One of the challenges of creating realistic-looking and delectable plant-based meat is mimicking the marbled effect of animal fat that many carnivores expect and enjoy.

A University of Massachusetts Amherst food scientist has a plan to tackle this quandary by developing new technology supported by a $250,000 grant from the Good Food Institute. The not-for-profit think tank promotes plant-based alternatives to meat, dairy and eggs, as well as cultivated "clean meat" grown from animal cells in a facility.

The technology proposed by Lutz Grossmann, an assistant professor, "has the potential to revolutionize the plant-based meat industry, expanding its product offerings and appealing to a wider audience," the institute stated in announcing the grant, one of 118 awarded in 21 countries, totaling more than $21 million, since 2019.

"The Good Food Institute has played a key role in supporting research for more sustainable food options, and UMass Food Science has been fortunate to receive funding," Grossmann says. In 2020, a team of UMass Amherst food scientists, led by Distinguished Professor David Julian McClements, received a grant from the institute to develop a new approach for creating tasty, plant-based, protein-rich food that's similar in texture to whole chicken, pork or beef. 

Grossmann, whose research focuses on designing holistic approaches to increase the consumption of plant- and microbial protein-rich foods, aims to incorporate lipids into high-moisture extrusion processes, a technique used to replicate the juiciness, appearance and texture of whole-muscle animal meat. 

"While high-moisture extrusion has become a primary method for creating meat-like textures from plant proteins, it currently lacks the ability to generate lipid marbling, a key characteristic for replicating the appearance, flavor and texture of traditional meat products," Grossmann explains.

The challenges of incorporating lipids into high-moisture extrusion processes are mainly related to the lubricating effect of plant lipids that disrupt the protein melt within the extruder barrel."

Lutz Grossmann, Assistant Professor, University of Massachusetts Amherst

In addition, injecting lipids during the cooling part of the process – when the meat-like structure is finalized – results in uneven distribution, leading to suboptimal texture, he adds.

To overcome these challenges and bridge the gap between plant proteins and lipids, Grossmann is developing and will implement a novel extrusion segment that will facilitate the creation of the marbled appearance and texture of plant-based whole-cut meat products. 

"The setup basically works like a piping bag that allows for making a two-colored swirl," Grossmann says.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Rise of multidrug-resistant Salmonella strains in U.S. retail chicken meat