Nanodrug targeting miR-10b shows promise in treating metastatic breast cancer

A new research paper was published in Oncotarget's Volume 15 on August 26th, 2024, entitled, "Inhibition of miR-10b treats metastatic breast cancer by targeting stem cell-like properties."

As stated within the Abstract of the paper, despite advances in breast cancer screening and treatment, the prognosis for metastatic disease remains dismal, with only a 30% five-year survival rate. This poor outcome is largely due to the failure of current therapeutics to target the unique properties of metastatic cells. One of the key drivers of metastasis is miR-10b, a small noncoding RNA implicated in cancer cell invasion, migration, viability, and proliferation.

Researchers Alan Halim, Nasreen Al-Qadi, Elizabeth Kenyon, Kayla N. Conner, Sujan Kumar Mondal, Zdravka Medarova, and Anna Moore from Michigan State University's Precision Health Program, College of Human Medicine, and College of Veterinary Medicine, and Transcode Therapeutics Inc. in Newton, Massachusetts, provide transcriptional evidence that inhibiting miR-10b with MN-anti-miR10b-; a nano drug designed to deliver anti-miR-10b antisense oligomers to cancer cells-; activates developmental processes in cancer cells. They observed increased miR-10b expression in stem-like cancer cells.

In mouse models of metastatic triple-negative breast cancer, MN-anti-miR10b has been shown to prevent the onset of metastasis and eliminate existing metastases when combined with chemotherapy, even after treatment has been discontinued.

"Our results demonstrate that inhibition of miR-10b using MN-anti-miR10b decreases the stemness of breast cancer cells, supporting dedifferentiation as a mechanism through which the nanodrug may function as a therapy."

Source:
Journal references:

Halim, A., et al. (2024) Inhibition of miR-10b treats metastatic breast cancer by targeting stem cell-like properties. Oncotarget. doi.org/10.18632/oncotarget.28641

 

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study uncovers how cancer builds molecular bridges to evade the immune system