ISS experiments reveal new advances in biosensing for cancer diagnostics

The University of Notre Dame is leading a series of groundbreaking experiments onboard the International Space Station (ISS) to revolutionize early cancer detection. This research, featured in the latest issue of Upwardofficial magazine of the ISS National Laboratory®, demonstrates how bubbles formed in microgravity can significantly enhance biosensing technology by concentrating microscopic substances more effectively than on Earth.

ISS experiments reveal new advances in biosensing for cancer diagnostics

Image courtesy of University of Notre Dame

The just-completed third experiment, which launched to the ISS on Northrop Grumman’s 21st Commercial Resupply Services mission to the orbiting laboratory, contracted by NASA, builds on the team’s earlier ISS National Lab-sponsored research. This most recent investigation successfully introduced laser heating to refine bubble behavior, increasing the concentration of particles collected—an essential step toward detecting early cancer biomarkers and other trace elements in blood. These advancements could dramatically improve the sensitivity of biosensors, opening the door to earlier and more accurate cancer detection.

“The technology currently available to screen for early, asymptomatic cancer before a tumor is visible during imaging is very limited to just a few cancers,” says principal investigator Tengfei Luo, associate chair in the department of aerospace and mechanical engineering at the University of Notre Dame, in the Upward article. “If cancer screening using our bubble technology in space is democratized and made inexpensive, many more cancers can be screened, and everyone can benefit. It’s something we may be able to integrate into annual exams. It sounds far-fetched, but it’s achievable.”

ISS National Lab Commercial Service Provider Space Tango worked with Luo’s team to develop specialized CubeLab hardware to automate the study of bubble formation and behavior in microgravity. The hardware includes advanced imaging systems designed to capture high-resolution data on bubble dynamics.

We’re using the unique space environment to push the boundaries of what’s possible in biosensing,” Luo said. “Our ultimate goal is to make these powerful diagnostic tools widely accessible and affordable on Earth and to accelerate diagnostics that are only possible in space.”

Tengfei Luo, associate chair, department of aerospace and mechanical engineering, University of Notre Dame

Source:

International Space Station (ISS) National Laboratory

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study uncovers why white button mushrooms may help prevent prostate cancer progression