Genetics of Polycystic Kidney Disease (PKD)

Polycystic kidney disease (PKD) is caused by mutations in the genome, mostly inherited (90%) but occasionally sporadic.

The genetics of ADPKD

In the great majority of individuals with PKD, the condition is inherited in an autosomal dominant manner, known as autosomal dominant polycystic kidney disease (ARPKD). This is due to mutations in the PKD1 gene on chromosome 16, causing type 1 disease. This accounts for more than 85% of cases. In most of the remaining, the mutation is in the PKD2 gene on chromosome 4, which results in type 2 ADPKD.

Ron Perrone, MD | Polycystic Kidney Disease (PKD)

These genes code for proteins called polycystin 1 and polycystin 2 respectively. Type 2 ADPKD is typically milder in course, with delayed onset of renal insufficiency, especially when it occurs in women.

95% of patients have a parent with the disease but in a tenth of families the mutation arose de novo.

The overall incidence of the mutant gene in ADPKD is up to 1/400 individuals and it is transmitted to 50% of offspring. One copy of the defective gene is sufficient to produce the clinical syndrome. In addition, if one abnormal copy of both genes is present, the clinical course may be more severe and progress more rapidly than if only one gene was abnormal.

Since the cysts grow at the same rate in both forms, it is likely that the difference is due to a higher number of cysts in type 1, rather than a higher growth rate. Other genes may also be involved in determining the manifestations of the disease. Every generation is likely to have affected individuals because of the dominant character of the inherited trait.

Polycystin 1 is a regulator of tubular epithelial cell adhesion and differentiation. Polycystin 2 is an ion channel. Mutations in these genes lead to dysfunction of the cilia on the tubular epithelium. Ciliary function is critical in helping the cells determine the rate of flow of urinary fluid. In the absence of the functional protein, tubular cells fail to sense this information, causing a deficit in their proliferation and differentiation and eventual transformation of the tubule into a cyst.

Early in the course of the disease, the tubules start to dilate, and are filled with ultrafiltered fluid from the glomeruli. With increasing cystic change, they detach from the parent glomeruli and transform into full-grown cysts, secreting still more fluid, leading to cyst enlargement.

The genetics of ARPKD

Mutations in the PKHD1 are responsible for causing autosomal recessive polycystic kidney disease (ARPKD).  This condition is much less frequent and occurs in only 1/10000 to 1/20000 individuals. It is carried via two copies of the abnormal PKHD1 gene on chromosome 6, one from each parent. Thus each child has a 25% chance of inheriting the disease, a 50% chance of being a carrier (having one copy of the gene, without clinical expression) and a 25% chance of not inheriting the abnormal gene at all. In this case, generations may be skipped with respect to the expression of the trait, because of its recessive character. Thus having early-onset polycystic kidney disease without a family history is suggestive of the ARPKD form, because the parents are carriers but not affected by the phenotypic expression of cyst formation.

The PKHD1 gene is found to occur in the kidneys, biliary ducts and the pancreas and is responsible for the expression of the protein fibrocystin. It is linked to cilia as well as to other sites in the tubular epithelium. Ciliary dysfunction due to the absence or low functional status of fibrocystin, leading to proliferation and secretory change in the affected tubular cells is thought to be the mechanism of cystic transformation.

References

Further Reading

Last Updated: Dec 30, 2022

Dr. Liji Thomas

Written by

Dr. Liji Thomas

Dr. Liji Thomas is an OB-GYN, who graduated from the Government Medical College, University of Calicut, Kerala, in 2001. Liji practiced as a full-time consultant in obstetrics/gynecology in a private hospital for a few years following her graduation. She has counseled hundreds of patients facing issues from pregnancy-related problems and infertility, and has been in charge of over 2,000 deliveries, striving always to achieve a normal delivery rather than operative.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, Liji. (2022, December 30). Genetics of Polycystic Kidney Disease (PKD). News-Medical. Retrieved on November 10, 2024 from https://www.news-medical.net/health/Genetics-of-Polycystic-Kidney-Disease.aspx.

  • MLA

    Thomas, Liji. "Genetics of Polycystic Kidney Disease (PKD)". News-Medical. 10 November 2024. <https://www.news-medical.net/health/Genetics-of-Polycystic-Kidney-Disease.aspx>.

  • Chicago

    Thomas, Liji. "Genetics of Polycystic Kidney Disease (PKD)". News-Medical. https://www.news-medical.net/health/Genetics-of-Polycystic-Kidney-Disease.aspx. (accessed November 10, 2024).

  • Harvard

    Thomas, Liji. 2022. Genetics of Polycystic Kidney Disease (PKD). News-Medical, viewed 10 November 2024, https://www.news-medical.net/health/Genetics-of-Polycystic-Kidney-Disease.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.