What is Taurine?

Taurine, also known as 2-aminoethanesulfonic acid, is a conditional amino acid that is found in natural dietary sources, biosynthesized in the body and produced by chemical synthesis for commercial purposes.

It was first isolated in 1827 by two German scientists, Friedrich Tiedemann and Leopold Gmelin, who discovered the presence of the substance in the bile of an ox. The name, taurine, is derived from the Latin term taurus, which means bull or ox.

Taurine is referred to as a conditional amino acid because it is derived from cysteine like other amino acids but lacks a carboxyl group that usually belongs to amino acids. Instead, it contains a sulfide group and can be called an amino sulfonic acid.

taurineImage Credit: Eugeniusz Dudzinski/Shutterstock.com

Physiological functions

Taurine is found in high concentration in many parts of the body such as the eyes, central nervous system and skeletal muscles.

Taurine is thought to have a significant impact on the cardiovascular system and is a major reason taurine supplementation may be recommended. The cardiac muscles are strengthened in the presence of taurine, leading to improved overall function. This effect is also seen in skeletal muscles and is believed to improve exercise capacity and physical abilities.

Additionally, the inhibitory GABA receptors in the brain are activated by taurine. This leads to the assumption that taurine has an inhibitory effect on the brain pathways, stabilizing stimulation effects seen by other substances, such as caffeine.

Natural food sources

Taurine is naturally found in some food sources, such as eggs, milk, seafood and meat. The daily intake of taurine varies greatly between individuals, from 10 – 400 mg per day, with an average of 58 mg.

Individuals following a vegan diet tend to have the lowest intake levels, due to the animal-based sources of taurine.

Synthesis and production

Taurine is naturally synthesized in the pancreas of the human body, via a process called the cysteine sulfinic acid pathway. This involves the oxidation of the sulfhydryl group on the cysteine molecule to form cysteine sulfinic acid, which undergoes decarboxylation to form hypotaurine and eventually taurine.

As public consumer demand for taurine has increased, commercial production of the substance has become necessary, with the introduction of chemical synthesis.

This is usually done with a reaction between ethylene oxide and sodium bisulfite to form isethionic acid, which is used to obtain the synthetic form of taurine. Alternatively, a reaction between aziridine and sulfurous acid is a single reactive process that can be used to obtain taurine.

taurineImage Credit: chromatos/Shutterstock.com

Use in energy drinks

Taurine is often included as an ingredient in energy drinks, which is most likely due to its physiological effect to improve muscular function and physical performance.

In comparison to the average dietary intake of 58 mg per day, many energy drinks contain high doses of taurine with 1000-2000 mg in each serving. Considering that some individuals may consume more than one serving each day, this has been a concern for some health advocates and stimulated research in the area.

However, doses of up to 3000 mg per day are generally considered to be safe with side effects rarely seen, although the long-term outcomes are not clear. It appears that the other constituents of energy drinks, such as glucose and caffeine, are more likely to cause significant side effects in high doses than taurine.

References

Further Reading

Last Updated: Mar 12, 2021

Yolanda Smith

Written by

Yolanda Smith

Yolanda graduated with a Bachelor of Pharmacy at the University of South Australia and has experience working in both Australia and Italy. She is passionate about how medicine, diet and lifestyle affect our health and enjoys helping people understand this. In her spare time she loves to explore the world and learn about new cultures and languages.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Smith, Yolanda. (2021, March 12). What is Taurine?. News-Medical. Retrieved on November 23, 2024 from https://www.news-medical.net/health/What-is-Taurine.aspx.

  • MLA

    Smith, Yolanda. "What is Taurine?". News-Medical. 23 November 2024. <https://www.news-medical.net/health/What-is-Taurine.aspx>.

  • Chicago

    Smith, Yolanda. "What is Taurine?". News-Medical. https://www.news-medical.net/health/What-is-Taurine.aspx. (accessed November 23, 2024).

  • Harvard

    Smith, Yolanda. 2021. What is Taurine?. News-Medical, viewed 23 November 2024, https://www.news-medical.net/health/What-is-Taurine.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
How do acetylsalicylic acid and warfarin interact with various nutrients?