Bioorthogonal Chemistry in Research

A bioorthogonal reaction is a reaction within a living system that does not interfere or interact in any way with native biochemistry of the system. The phrase ‘bioorthogonal’ was coined in 2003, and bioorthogonal chemistry is now widely used to study biomolecules in living systems.

Molecules involved in chemical reaction - Pavel Chukhov

Pavel Chukhov | Shutterstock

The functional groups participating in the reaction are inert to biologically active molecules, and reactive selectively with each other. The chemistry of the reaction must also be nontoxic to the organism.

Ideally, the functional groups involved in the reaction are small enough not to disrupt the structure or function of the biomolecules they are attached to. Challenges in the development of bioorthogonal reactions include stability of reactants and products in water, kinetics, and side reactivity. The reaction also must be tested in conditions matching the intended cellular environment.

Bioorthogonal chemistry can be used to study aspects of biological systems for which traditional biochemical and/or molecular biological methods have been inadequate. Those include studies of biomolecules like glycans, lipids, and metabolites and the processes surrounding them.

How are bioorthogonal reactions designed?

A bioorthogonal study usually has two steps. First, a bioorthogonal functional group is added to a metabolic substrate, a small molecule ligand, or an enzyme inhibitor; then the resulting complex is introduced into a living system. Next, the molecule reacts with a functionalized probe within the system.

The design of bioorthogonal reactions is a challenge in the field of chemistry. The reaction must form a stable, covalent bond between two functional groups that are otherwise completely inert within the system, as well as non-toxic. Its kinetics must be rapid so that it forms product at a reasonable rate – even when concentrations are low. Finally, it must have appropriately fast kinetics in the physiological range of pH and temperature values.

Early bioorthogonal chemistry discoveries

One of the first bioorthogonal reactions was developed by Bertozzi and his colleagues in a study of cell surface N-glycoprotein labeling. They found that N-levulinoyl-mannosamine was an acceptable substrate for the CMP-sialic acid biosynthesis reactions in mammalian cells.

Modified CMP-sialic acids were then transferred by sialic acid transferases to N-glycoprotein chains and moved to the cell surface. In the next step, a ketone moiety on the levulinoyl group reacts with a fluorescently tagged hydrazide in a bioorthogonal manner.

The Bertozzi group subsequently showed that they could achieve the same reaction with higher efficiency by incorporating an azide group followed by reaction with biotin phosphane. This reaction is called the Staudinger-Bertozzi ligation.

Another bioorthogonal reaction makes use of a copper(I)-catalyzed azide-alkyne cycloaddition - or “click reaction” - which utilizes an azide or alkyne group on the target biomolecule. The group subsequently reacts with a reporter molecule, usually a biotinylated or fluorescent azide or alkyne. In a nutshell, click reagents eliminate the need for a copper catalyst.

Thus far, only a handful of true bioorthogonal reagents have been discovered. Nonetheless, the development of bioorthogonal reagents is expected to enable deeper and more accurate studies of systems in living organisms. The requirements for bioorthogonal reactions are quite strict, but some chemical reactions hold promise for use as true bioorthogonal reagents.

Further Reading

Last Updated: Dec 6, 2018

Dr. Catherine Shaffer

Written by

Dr. Catherine Shaffer

Catherine Shaffer is a freelance science and health writer from Michigan. She has written for a wide variety of trade and consumer publications on life sciences topics, particularly in the area of drug discovery and development. She holds a Ph.D. in Biological Chemistry and began her career as a laboratory researcher before transitioning to science writing. She also writes and publishes fiction, and in her free time enjoys yoga, biking, and taking care of her pets.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Shaffer, Catherine. (2018, December 06). Bioorthogonal Chemistry in Research. News-Medical. Retrieved on November 18, 2024 from https://www.news-medical.net/life-sciences/Bioorthogonal-Chemistry-in-Research.aspx.

  • MLA

    Shaffer, Catherine. "Bioorthogonal Chemistry in Research". News-Medical. 18 November 2024. <https://www.news-medical.net/life-sciences/Bioorthogonal-Chemistry-in-Research.aspx>.

  • Chicago

    Shaffer, Catherine. "Bioorthogonal Chemistry in Research". News-Medical. https://www.news-medical.net/life-sciences/Bioorthogonal-Chemistry-in-Research.aspx. (accessed November 18, 2024).

  • Harvard

    Shaffer, Catherine. 2018. Bioorthogonal Chemistry in Research. News-Medical, viewed 18 November 2024, https://www.news-medical.net/life-sciences/Bioorthogonal-Chemistry-in-Research.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers discover how mutations disrupt protein splicing and cause disease