What is Connectomics?

Connectomics is the study of the brain’s structural and functional connections between cells, which is visualized as a connectome.

Connectomics is the study of the brain’s structural and functional connections between cells, which is visualized as a connectome.Rost9 | Shutterstock

The connectome is a map of all neural connections in a brain and connectomics is the mapping of these connections. Connectomics can provide insights about the brain and many incurable diseases that are associated with it.

The connectome

A connectome is also sometimes called a wiring diagram, wherein the brains axons and dendrites are analogous to wires and the neuron bodies to components. The molecular states related to learning at every synaptic connection is the synaptome, and changes in the nucleus of the neuron related to learning is referred to as the epigenome.

Connectomes tend to be animal-specific, such as one of the few completed connectomes of C. elegans, or specific to certain brain regions or subsystems, such as a hippocampal connectome.

The usefulness of connectomics is somewhat debated. Among popular arguments against it is that connectomics typically provides a static image. It can show which neurons have the possibility of interacting, but it does not show if they do, how much they do, and what the effect of that interaction is.

The key is integrating normal behaviors into the connectome, to see neuronal activity during normal states. However, a connectome can provide a starting point by showing the static physical connections in place which underlie activity.

Why use connectomics?

Human mental behavior, including in a healthy state, such as intelligence and in deleterious conditions, such as schizophrenia, is theorized to correlate with certain brain features. But these hypotheses have had limited exploration due to the lack of tools.

Connectomics can help in investigating how the physiology of the brain is correlated to behavior. Comparative connectomics between different brains can show us more about how mental pathologies are caused, which can lead to better treatment strategies, such as designer drugs and custom neural prostheses.

While the intricacies of memories and memory formation remain unclear, many researchers believe that memories may be stored in synapses, with new memories forming when synapses are strengthened or weakened and during the formation of new synapses.

This theory is difficult to test, but connectomics could help investigate how memory works and how they are formed. Some scientists even believe that by constructing a connectome, an individual’s memories could be recalled.

Connectomics progress

The completed connectome of C. elegans maps its 300 neurons and roughly seven thousand synaptic connections. This does not include synaptome or epigenome maps, but still took twelve years of manually recognizing and cataloging the neurons.

The human brain, in contrast, is eleven orders of magnitude more complex than C. elegans with around 100 billion neurons and 700 trillion synaptic connections. Therefore, creating a connectome using the same method as C. elegans is not realistic.

There are to main ways to build connectomes. One is by imaging techniques, such as MRI, PET, and DT, which enables visualization of macroscopic structures in the brain. Other methods visualize microscopic connections using electron microscopy to see individual synapses. Electron microscopy was used to build the connectome of C. elegans.

Connectomics applied to humans will necessitate a large group of electron microscopes coupled with artificial intelligence to aid in visually tracing neuronal projections and identifying and characterizing synapses.

Current research is attempting to automate the process of scanning brain slices to remove some of the time drain associated with building a connectome. The exponential improvement in electron microscopy and artificial intelligence in visual discrimination makes the future of human connectomes positive.

Further Reading

Last Updated: Apr 11, 2019

Sara Ryding

Written by

Sara Ryding

Sara is a passionate life sciences writer who specializes in zoology and ornithology. She is currently completing a Ph.D. at Deakin University in Australia which focuses on how the beaks of birds change with global warming.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Ryding, Sara. (2019, April 11). What is Connectomics?. News-Medical. Retrieved on January 22, 2025 from https://www.news-medical.net/life-sciences/What-is-Connectomics.aspx.

  • MLA

    Ryding, Sara. "What is Connectomics?". News-Medical. 22 January 2025. <https://www.news-medical.net/life-sciences/What-is-Connectomics.aspx>.

  • Chicago

    Ryding, Sara. "What is Connectomics?". News-Medical. https://www.news-medical.net/life-sciences/What-is-Connectomics.aspx. (accessed January 22, 2025).

  • Harvard

    Ryding, Sara. 2019. What is Connectomics?. News-Medical, viewed 22 January 2025, https://www.news-medical.net/life-sciences/What-is-Connectomics.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.