Wnt Signalling Pathway

Wnt signalling is an important, evolutionarily conserved signalling pathway that determines cell fate decisions and tissue patterning during embryonic development and later development.

The pathway is activated by Wnt proteins, a family of 19 highly conserved molecules that are secreted as glycoproteins that form concentration gradients across developing tissues.

Wnt signalling pathway. Image Credit: Meletios Verras / Shutterstock
Wnt signalling pathway. Image Credit: Meletios Verras / Shutterstock

Wnt signalling regulates cell fate decisions, neural patterning, cell migration, cell polarity and organ formation during embryonic development. Wnt proteins are also known to regulate the behaviour of different types of stem cells, keeping them in a state of self-renewal.

The Wnt signalling pathway plays a vital role in embryogenesis and its dysregulation has severe consequences for a developing embryo. Defective Wnt signalling is known to lead to several human pathologies, including cancer of the colon, breast and skin, skeletal effects and birth defects including spina bifida.

The Wnt/β-catenin signaling pathway

Wnt Proteins

Wnt proteins are globular molecules with a molecular weight of around 40 KDa. The N-terminus is made up of α-helices that have five disulfide bonds and the C-terminus is made up of two β-sheets that have six disulfide bridges.

Prior to their secretion into the extracellular environment, Wnt proteins are subjected to post-translational modification. Wnt undergoes glycosylation and palmitoylation by a protein called Porcupine and is then transported by Wntless proteins to the plasma membrane. An absence of either Porcupine or Wntless proteins stops Wnt proteins being released, which leads to the development of birth defects.

Wnt proteins induce signalling when they bind to a membrane receptor complex comprising a Frizzled (Fz) G-protein-coupled receptor and a lipopolysaccharide-like receptor protein 5/6 (LRP5/6). The Fz protein contains seven transmembrane-spanning domains and a large extracellular N-terminal domain that serves as a platform for Wnt binding.

Extracellular Wnt proteins activate intracellular signal transduction cascades downstream of the Fz receptor. These are classified as the canonical, or Wnt/β-catenin pathway, and the non-canonical, or β-catenin-independent, pathway. The non-canonical pathway is further divided into the Planar Cell Polarity and the Wnt/Ca2+ pathways.

The Canonical Pathway

Beta-catenin migrates into the nucleus, where it associates with T cell factor (TCF) and l ymphoid enhancer factor (LEF) transcription factors . This results in Wnt target genes being transcribed. When there is no Wnt signal, the TCF/LEF transcription factors interact with inhibitors of Wnt transcription, which supresses Wnt signalling.

This inhibitory effect is mediated by interactions with histone deacetylases, which prevents transcription of genes . Inhibitors of beta-catenin are ICAT and duplin, which directly interact with beta-catenin to prevent it associating with TCF/LEF.

The Non-Canonical Pathway

The non-canonical pathway or β-catenin-independent pathway is further divided into the Planar Cell Polarity pathway and the Wnt/Ca2+ pathway.

The planar cell polarity pathway

Wnt signalling via Frizzled receptors directs asymmetric cytoskeleton organization and cell polarization by causing modification of the actin cytoskeleton. A key Wnt signalling protein called Dishevelled initiates two independent pathways that induce activation of two GTPases, Rho and Rac. Rho activation leads to the activation of a Rho-associated kinase called ROCK. Rac activation induces Jun Kinase activity.

The Wnt/Ca2+ pathway

Activation of the Wnt signalling pathway via Fz receptors can also result in the release of intracellular calcium. The Frizzled co-receptors Knypek and Ror2 are activated in this pathway. Other activated intracellular messengers in the pathway are G-proteins, phospholipase C and protein kinase C. The increase in calcium can activate a calcium/calmodulin-dependent protein phosphatase called calcineurin, which results in dephosphorylation of a transcription factor called NF-AT (Nuclear factor of activated T-cells) and its accumulation in the nucleus.

Further Reading

Last Updated: Jul 21, 2023

Sally Robertson

Written by

Sally Robertson

Sally first developed an interest in medical communications when she took on the role of Journal Development Editor for BioMed Central (BMC), after having graduated with a degree in biomedical science from Greenwich University.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Robertson, Sally. (2023, July 21). Wnt Signalling Pathway. News-Medical. Retrieved on January 21, 2025 from https://www.news-medical.net/life-sciences/Wnt-Signalling-Pathway.aspx.

  • MLA

    Robertson, Sally. "Wnt Signalling Pathway". News-Medical. 21 January 2025. <https://www.news-medical.net/life-sciences/Wnt-Signalling-Pathway.aspx>.

  • Chicago

    Robertson, Sally. "Wnt Signalling Pathway". News-Medical. https://www.news-medical.net/life-sciences/Wnt-Signalling-Pathway.aspx. (accessed January 21, 2025).

  • Harvard

    Robertson, Sally. 2023. Wnt Signalling Pathway. News-Medical, viewed 21 January 2025, https://www.news-medical.net/life-sciences/Wnt-Signalling-Pathway.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.