Functionalization of individual ultra-short single-walled carbon nanotubes

While most research aimed at developing carbon nanotubes as tumor-targeting drug and imaging agent delivery vehicles has focused on full-length nanotubes, Lon Wilson, Ph.D., and his colleagues at Rice University have been working with ultra-short nanotubes that cells appear to take up more efficiently than their longer counterparts.

Now, this group of investigators has developed a method for modifying ultra-short carbon nanotubes so that they do not aggregate into bundles, one of the major problems in using this material in biomedical applications.

Reporting its work in the journal Nanotechnology, the Rice team describes the chemical technique it developed to change the surface properties of ultra-short carbon nanotubes so that they take on a negative charge. Since two objects that each have a negative charge will repel one another, the nanotubes remain as individual entities in solution. This enabled the researchers to further modify the nanotubes so that they can link targeting agents, anticancer drugs, or imaging agents to the nanotubes. This second modification also helps the nanotubes dissolve better in water than unmodified ultra-short nanotubes.

The researchers note that ultra-short carbon nanotubes can be filled with drugs and imaging agents. In fact, this group reported last year that it had successfully loaded the MRI contrast agent gadolinium into ultra-short nanotubes. With their new approach to creating nanotubes that do not aggregate, the investigators believe they have taken a significant step forward in their efforts to develop clinically useful agents for imaging and therapy.

This work is detailed in a paper titled, “Functionalization of individual ultra-short single-walled carbon nanotubes.” An abstract of this paper is available at the journal’s website. View abstract.

http://nano.cancer.gov

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New study unveils why glioblastoma becomes resistant to treatment