Nanoscale dots target and track apoptosis

Apoptosis, or programmed cell death, is a hallmark effect triggered by effective anticancer drugs. Now, researchers in Korea have developed a biocompatible, fluorescent nanoparticle that could provide an early sign that apoptosis is occurring as a result of anticancer therapy.

The results of their work, published in the journal Bioconjugate Chemistry, could provide a boost for both clinical oncology and cancer research.

The availability of a real-time assay of apoptosis would provide a critically useful tool for oncologists, who would then have the means to determine whether a given therapeutic approach was working soon after that therapy was started. Cancer drug development would also benefit from a real-time apoptosis assay if such an assay could be used to provide rapid and sensitive results in high-throughput drug screening experiments.

A research team headed by Dae Hong Jeong, Ph.D., Yoon-Sik Lee, Ph.D., and Myung-Haing Cho, D.V.M., Ph.D., Seoul National University, created their fluorescent surface enhanced Raman spectroscopic (F-SERS) nanodots to boost the optical signal generated by typical, biocompatible fluorescent dyes. The nanodots consist of silver nanoparticles embedded in a silica sphere. Attached to the silica core are fluorescent dye molecules and molecules known as Raman labels that enhance the electronic interactions between the silver nanoparticles and the dye molecules. The researchers also linked annexin-V, a molecule that binds specifically to a chemical that appears on cells undergoing apoptosis, to the silica-silver nanoparticle construct.

Toxicity tests showed that the silica-silver nanodots were not toxic to various human cells growing in culture. The investigators then added the nanodots to cells triggered to undergo apoptosis and were able to image those cells as they went through programmed cell death. Based on these results, the researchers prepared other nanodots containing antibodies that bind to other molecules involved in apoptosis. They then added these antibody-linked nanodots and the annexin-V-linked nanodots to cultured human lung cancer cells. The investigators were able to track the appearance of all three molecules simultaneously, which has been difficult to do using conventional cell staining techniques.

This work is detailed in the paper "Multiplex targeting, tracking, and imaging of apoptosis by fluorescent surface enhanced raman spectroscopic dots." An investigator from the University of Illinois at Urbana-Champaign also participated in this study. An abstract of this paper is available through PubMed. View abstract.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
How alcohol impacts male health