Feeding the world without genetic engineering

The work of a Kansas State University professor is challenging the assumption that genetically engineered plants are the great scientific and technological revolution in agriculture and the only efficient and cheap way to feed a growing population.

Jianming Yu, an assistant professor of agronomy, is teaming with Rex Bernardo, a professor of agronomy and plant genetics at the University of Minnesota, on research with marker-assisted selection. This agricultural technology offers a sophisticated method to greatly accelerate classical breeding through genetic analysis and selection of existing natural diversity in various crops without having to resort to alien species. Currently, marker-assisted selection has been a routine in many private seed companies with large-scale fingerprinting, global germplasm assessment and comprehensive bioinformatics support.

Yu's and Bernardo's research is focused on breeding methodology, finding more efficient ways to breed better varieties of corn, sorghum, wheat or barley that yield higher, require less irrigation and are resistant to diseases in farmers' fields. The pair's work was recently published in an edition of the scientific journal Crop Science .

"With abundant molecular markers that can be routinely processed with modern genomic technology, we found it is more efficient to focus on selection based information all across the genome rather than the traditional way of genomic regions containing signals that pass a threshold," Yu said.

Their research is "a result of our constant deliberation of how to incorporate modern genomic technologies into breeding process, a more general term as genomic-assisted plant breeding, which differs from what scientists have been doing -- using markers to guide the introgression of single or multiple disease resistance genes," Yu said.

"The traditional way is to identify genome regions that show significant information," he said. "The new way is to consider all information genomewide. In other words, we strategically shifted the focus from finding the most interesting genome areas to considering all information simultaneously. This is critical, especially given that most of traits with agricultural importance are controlled by many interacting genomic regions and their individual effects are relatively small."

Yu and Bernardo plan to conduct experiments with sorghum in Kansas and maize in Minnesota.

"It will provide breeders, public or private, a powerful tool to advance their breeding practices," Yu said.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study identifies a potential treatment for Sandhoff and Tay-Sachs diseases