Replacing dopamine cells in Parkinson's - new source of cells found

Parkinson disease (PD) is caused by the progressive degeneration of brain cells known as dopamine (DA) cells.

Replacing these cells is considered a promising therapeutic strategy. Although DA cell–replacement therapy by transplantation of human fetal mesencephalic tissue has shown promise in clinical trials, limited tissue availability means that other sources of these cells are needed. Now, Ernest Arenas and colleagues at the Karolinska Institue, Sweden, have identified a new source for DA cells that provided marked benefit when transplanted into mice with a PD-like disease.

In the study, DA cells were derived from ventral midbrain (VM) neural stem cells/progenitors by culturing them in the presence of a number of factors — FGF2, sonic hedgehog, and FGF8 — and engineering them to express Wnt5a. This protocol generated 10-fold more DA cells than did conventional FGF2 treatment. Further analysis revealed that these cells initiated substantial cellular and functional recovery when transplanted into mice with PD-like disease. Importantly, the mice did not develop tumors, a potential risk that has precluded the clinical development of embryonic stem cells as a source of DA cells. These data led the authors to suggest that Wnt5a-treated neural stem cells might be an efficient and safe source of DA cells for the treatment of individuals with PD.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New insights into early Huntington's disease mechanisms