NIH and EPA announce new chemical toxicity testing agreement

Testing the safety of chemicals ranging from pesticides to household cleaners will benefit from new technologies and a plan for collaboration, according to federal scientists from the National Institutes of Health (NIH) and the U.S. Environmental Protection Agency (EPA), who have announced a new toxicity testing agreement.

The concept behind this agreement is highlighted in the Feb. 15, 2008 issue of the journal Science .

"I launched the NIH Roadmap for Medical Research five years ago to create collaborations between institutes and centers on big projects that none of them could do alone. But I never envisioned a trans-agency collaboration testing for environmental toxins," said NIH Director Elias A. Zerhouni, M.D. "This research collaboration has the potential to make crucial discoveries that will protect the public health by identifying and understanding chemical toxicants to which people are exposed."

Two NIH institutes have formed a collaboration with the EPA to use the NIH Chemical Genomics Center's (NCGC) high-speed, automated screening robots to test suspected toxic compounds using cells and isolated molecular targets instead of laboratory animals. This new, trans-agency collaboration is anticipated to generate data more relevant to humans; expand the number of chemicals that are tested; and reduce the time, money and number of animals involved in testing. Full implementation of the hoped-for paradigm shift in toxicity testing will require validation of the new approaches, a substantial effort that could consume many years.

This collaboration is being made possible through a newly signed five-year Memorandum of Understanding (MOU), which leverages the strengths of each organization. The MOU builds on the experimental toxicology expertise at the National Toxicology Program (NTP), headquartered at the National Institute of Environmental Health Sciences (NIEHS), NIH; the high-throughput technology at NCGC, managed by the National Human Genome Research Institute (NHGRI), NIH; and the computational toxicology capabilities at the EPA's recently formed National Center for Computational Toxicology (NCCT).

The MOU provides for sample and information sharing necessary to more rapidly and effectively identify chemicals that might pose possible risks to the health of humans and animals and to the environment. It addresses opportunities for coordination in four basic areas related to achieving the toxicant testing goals, including: identification of toxicity pathways; selection of chemicals for testing; analysis and interpretation of data; and outreach to the scientific and regulatory communities. The collective budget is yet to be determined.

The MOU and the plans articulated in the Science article provide a framework to implement the long-range vision outlined in the 2007 National Research Council (NRC) report, Toxicity Testing in the 21st Century: A Vision and a Strategy , which calls for a collaborative effort across the toxicology community to rely less on animal studies and more on in vitro tests using human cells and cellular components to identify chemicals with toxic effects. Importantly, the strategy calls for improvements in dose-response research, which will help predict toxicity at exposures that humans may encounter.

The collaborative research program is outlined in the jointly authored Science paper.

The co-authors — Francis S. Collins, M.D., Ph.D., NHGRI director; George M. Gray, Ph.D., assistant administrator for EPA's Office of Research and Development which houses the NCCT; and John R. Bucher, Ph.D., NTP associate director — describe the possibility of shifting from reliance on animal testing to biochemical- and cell-based assays, as well as those using lower organisms, such as zebrafish and roundworms.

Data collection to determine chemical toxicity currently relies heavily on whole-animal tests. The growing number of new chemicals, high testing costs and public unease with animal testing led to the search for alternate toxicology testing methods. Quantitative high-throughput screening (qHTS), developed at NCGC, increases the rate at which chemicals are tested, and profiles compounds over a wide range of concentrations. These qualities make the new qHTS technology ideal for toxicology testing, with the potential for advancing the goal of more accurate and timely public health decisions.

"A central component of federal effort will explore the use of high-throughput screening assays in toxicology," NHGRI's Dr. Collins said. "Such assays allow for the testing of thousands to hundreds of thousands of chemicals a day to determine their possible toxic effect." NCGC is part of a larger Molecular Libraries Imaging Program within the NIH Roadmap for Medical Research. It was designed to advance research on molecules from which most medicines marketed today are derived.

"We now are seeing tools newly available to us for chemical genomics research deployed for greater refinement, speed and capacity in chemical toxicity screening," Dr. Collins said.

"The experimental and computational expertise required to transform toxicology is an enormous undertaking and too great for any of our existing organizations to accomplish alone," said NTP's Dr. Bucher. "This collaborative approach allows us to draw on our individual strengths and establishes a long-term, multiple U.S. federal agency commitment." NTP will contribute thousands of compounds for testing. NTP's animal toxicology expertise will be utilized, along with a large database of the chemicals' effects on animals, with which the new cell-based data will be compared.

"As our detailed research strategy continues to develop, we will welcome the participation of other federal partners, as well as interested public and private sector organizations, to make this vision of 21st century toxicology a reality" said EPA's Dr. Gray. The EPA's engagement in this collaboration is part of its ToxCast program—an initiative launched in 2007 to revolutionize the agency's chemical toxicity evaluation procedures. ToxCast use advances in computers, genomics and cellular biology to speed up toxicity testing and enhance capacity to screen new compounds.

Follow this link for full-resolution b-roll clips from the NCGC facility, genome.gov/pressDisplay.cfm?photoID=20030.

The Environmental Protection Agency's National Center for Computational Toxicology (NCCT) is a part of EPA's Office of Research and Development (ORD). Located in Research Triangle Park, N.C., NCCT coordinates and implements EPA's research in the field of computational toxicology. Computational toxicology is simply defined as the blending of modern computer science with molecular biology. The Center's goal is to improve the ability of the Agency to assess chemical hazard and risk. The Center's goal is to make the process more effective and efficient, while increasing the numbers of chemicals that can be evaluated. For more information about NCCT and its programs, visit http://www.epa.gov/ncct/.

The National Human Genome Research Institute is part of the National Institutes of Health. For more about NHGRI, visit www.genome.gov.

The National Institute of Environmental Health Sciences (NIEHS), a component of the National Institutes of Health (NIH), supports research to understand the effects of the environment on human health. For more information on environmental health topics, please visit our website at http://www.niehs.nih.gov/.

The National Institutes of Health (NIH) - The Nation's Medical Research Agency - includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Antibiotic activity altered by interaction with nanoplastics, new research shows