Ciliary neurotrophic factor protects nerve cells

Since its discovery as a protein that gets specifically released in response to brain injury, ciliary neurotrophic factor (CNTF) has prompted much interest as a potential therapeutic agent.

However, numerous experiments have met with limited success, until now; a research team shows that co-administrating CNTF with its receptor promotes the growth and survival of neurons.

While the receptor for CNTF is normally tied to the surface of neurons, this tether is frequently chopped off during trauma, which led Mark Ozog, Christian Naus and colleagues to suspect that CNTF and the free-floating receptor might act in a complex. Their study appears in JBC online February 29.

They treated mouse neurons with CNTF, its receptor (CNTFR), or both and then exposed the cells to massive amounts of the neurotransmitter glutamate, enough to kill the neurons by over-stimulating them. CNTF or CNTFR alone did not protect the neurons, but the two complexed together could. In addition, the complex could foster increased growth of nerve cells.

Ozog, Naus and colleagues next ran a microarray analysis of the CNTF complex and found that it altered the expression of 47 genes associated with nerve growth and survival, suggesting it protects neurons through multiple direct and indirect mechanisms and thus making it a strong therapeutic candidate.

http://www.asbmb.org/

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Nogo-A inhibition demonstrates potential for spinal cord injury recovery