Cutting edge computing sheds light on how life on earth may have originated

The UK's national computing grid, along with their counterparts in the US (TeraGrid) and Europe have helped UCL (University College London) scientists shed light on how life on earth may have originated.

Deep ocean hydrothermal vents have long been suggested as possible sources of biological molecules such as RNA and DNA but it was unclear how they could survive the high temperatures and pressures that occur round these vents.

In a study published today in the Journal of the American Chemical Society, Professor Peter Coveney and colleagues at the UCL Centre for Computational Science have used computer simulation to provide insight into the structure and stability of DNA while inserted into layered minerals. Computer simulation techniques have rarely been used to understand the possible chemical pathways to the formation of early biomolecules until now.

Professor Coveney explains, “Computational grids are only now being made easy to use for scientists, enabling simulations of sufficient size to model these large biomolecule and mineral systems”.

Previous experimental studies have shown that molecules such as DNA can be inserted into minerals called layered double hydroxides (LDHs) but no one has thus far been able to show at the level of atoms and molecules how the DNA interacts with the mineral, or how the DNA might look inside the mineral layers. These minerals would have been common in the earliest age of Earth 2500 million years ago.

The simulations reproduced the high temperatures and pressures that occur around hydrothermal vents. It was shown that the structure of DNA inserted into layered minerals becomes stabilized at these conditions and therefore protected from catalytic and thermal degradation.

“Grids of supercomputers are essential for this kind of study”, says Professor Coveney, “The time taken to run these simulations is reduced from the years that a desktop computer would take, to hours by using the many thousands of processors made available across continents”.

Professor Coveney's group has been researching into the routes to the origin of life for a number of years, studying the way that genetic information may have arisen and been replicated, as well as how small molecules may have formed, working together with colleagues at Nottingham and Durham Universities.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Stanford researchers unveil the key role of extrachromosomal DNA in cancer