Study identifies DNA methylation entropy as a biomarker for aging

A new research paper was published in Aging (Aging-US) Volume 17, Issue 3, on March 12, 2025, titled "DNA methylation entropy is a biomarker for aging."

Researchers Jonathan Chan, Liudmilla Rubbi, and Matteo Pellegrini from the University of California, Los Angeles, led a study that discovered a new way to measure changes in DNA that can help predict a person's age. This method focuses on how random certain chemical tags on DNA become over time. The team compared this new measurement, called methylation entropy, to existing methods and found it performed just as well-or even better. These findings support the idea that changes in our epigenetic information are closely linked to aging and could offer new tools for studying age-related diseases.

The study focused on DNA methylation, a process where chemical marks are added to DNA and help control which genes are turned on or off. Scientists have traditionally measured average methylation levels to estimate biological age using "epigenetic clocks." This study, however, takes a different approach. The researchers used buccal swabs (cells from inside the cheek) from 100 individuals between ages 7 and 84 and applied targeted bisulfite sequencing techniques to measure methylation entropy across 3,000 regions of the genome.

Entropy in this context reflects how disordered or varied the methylation patterns are at certain sites on the DNA. The researchers discovered that as people age, the entropy of methylation at many locations changes in a reproducible way. Sometimes it increases, reflecting more random patterns, and sometimes it decreases, showing more uniformity. These shifts are not always tied to how much methylation is happening, which suggests entropy provides new information beyond what traditional methods can offer.

To test how well this new metric could predict age, the team used both statistical and machine learning models. They found that methylation entropy predicted age as accurately as traditional methods, and the best results came from combining entropy with other measurements like average methylation and a method called CHALM. These combined models were able to estimate age with an average error of just five years.

"[…] methylation entropy is measuring different properties of a locus compared to mean methylation and CHALM, and that loci can become both more or less disordered with age, independently of whether the methylation is increasing or decreasing with age."

This research supports the growing theory that aging is partly caused by a gradual loss of epigenetic information-the biological "instructions" that help keep our cells working properly. This insight also connects with recent studies suggesting that restoring this lost information might reverse some signs of aging. While more research is needed to study methylation entropy in other tissues, this work points to a more precise and powerful way to measure biological aging, which could influence the future of aging-related treatments and therapies.

Source:
Journal reference:

Chan, J., et al. (2025). DNA methylation entropy is a biomarker for aging. Aging. doi.org/10.18632/aging.206220.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Mitochondria found to fuel dangerous growth in aging blood stem cells