Human protein may offer novel target for blocking HIV infection

A research group supported by the National Institutes of Health (NIH) has uncovered a new route for attacking the human immunodeficiency virus (HIV) that may offer a way to circumvent problems with drug resistance. In findings published today in the online edition of the Proceedings of the National Academy of Sciences, the researchers report that they have blocked HIV infection in the test tube by inactivating a human protein expressed in key immune cells.

Most of the drugs now used to fight HIV, which is the retrovirus that causes acquired immune deficiency syndrome (AIDS), target the virus's own proteins. However, because HIV has a high rate of genetic mutation, those viral targets change quickly and lead to the emergence of drug-resistant viral strains. Doctors have tried to outmaneuver the rapidly mutating virus by prescribing multi-drug regimens or switching drugs. But such strategies can increase the risk of toxic side effects, be difficult for patients to follow and are not always successful. Recently, interest has grown in attacking HIV on a new front by developing drugs that target proteins of human cells, which are far less prone to mutations than are viral proteins.

In the new study, Pamela Schwartzberg, M.D., Ph.D., a senior investigator at the National Human Genome Research Institute (NHGRI), part of NIH; Andrew J. Henderson, Ph.D., of Boston University; and their colleagues found that when they interfered with a human protein called interleukin-2-inducible T cell kinase (ITK) they inhibited HIV infection of key human immune cells, called T cells. ITK is a signaling protein that activates T cells as part of the body's healthy immune response.

"This new insight represents an important contribution to HIV research," said NHGRI Scientific Director Eric D. Green, M.D., Ph.D. "Finding a cellular target that can be inhibited so as to block HIV validates a novel concept and is an exciting model for deriving potential new HIV therapies."

When HIV enters the body, it infects T cells and takes over the activities of these white blood cells so that the virus can replicate. Eventually, HIV infection compromises the entire immune system and causes AIDS. The new work shows that without active ITK protein, HIV cannot effectively take advantage of many signaling pathways within T cells, which in turn slows or blocks the spread of the virus.

"We were pleased and excited to realize the outcome of our approach," Dr. Schwartzberg said. "Suppression of the ITK protein caused many of the pathways that HIV uses to be less active, thereby inhibiting or slowing HIV replication."

In their laboratory experiments, the researchers used a chemical inhibitor and a type of genetic inhibitor, called RNA interference, to inactivate ITK in human T cells. Then, the T cells were exposed to HIV, and the researchers studied the effects of ITK inactivation upon various stages of HIV's infection and replication cycle. Suppression of ITK reduced HIV's ability to enter T cells and have its genetic material transcribed into new virus particles. However, ITK suppression did not interfere significantly with T cells' normal ability to survive, and mice deficient in ITK were able to ward off other types of viral infection, although antiviral responses were delayed.

"ITK turns out to be a great target to examine," said Dr. Schwartzberg, noting that researchers had been concerned that blocking other human proteins involved in HIV replication might kill or otherwise impair the normal functions of T cells.

According to Dr. Schwartzberg, ITK already is being investigated as a therapeutic target for asthma and other diseases that affect immune response. In people with asthma, ITK is required to activate T cells, triggering lung inflammation and production of excess mucus.

"There are several companies who have published research about ITK inhibitors as part of their target program," Schwartzberg said. "We hope that others will extend our findings and that ITK inhibitors will be pursued as HIV therapies."

NHGRI researchers received support for this work from the NIH Intramural AIDS Targeted Antiviral Program. Chemical compounds used in the research were synthesized at the NIH Chemical Genomics Center, which was established through the NIH Roadmap for Medical Research and is administered by NHGRI. The Boston University group originally participated in the research while at Pennsylvania State University, where they received support from Penn State Tobacco Formula Funds, and where Dr. Henderson received support from the National Institute of Allergy and Infectious Diseases (NIAID).

For more information about HIV/AIDS, go to: http://www3.niaid.nih.gov/healthscience/healthtopics/HIVAIDS/overview.htm.

NHGRI is one of the 27 institutes and centers at the NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Intramural Research develops and implements technology to understand, diagnose and treat genomic and genetic diseases. Additional information about NHGRI can be found at its Web site, www.genome.gov.

NIAID is a component of the NIH. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on basic immunology, transplantation and immune-related disorders, including autoimmune diseases, asthma and allergies. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at www.niaid.nih.gov.

The National Institutes of Health (NIH) - The Nation's Medical Research Agency - includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough in protein engineering may lead to more effective cancer therapies