Researchers discover "master gene" behind blood vessel development

In a first of its kind discovery, University of Minnesota researchers have identified the "master gene" behind blood vessel development.

Better understanding of how this gene operates in the early stages of development may help researchers find better treatments for heart disease and cancer.

Using genetically engineered mice, researchers with the University of Minnesota Medical School's Lillehei Heart Institute were able to identify a protein, Nkx2-5, which activates a certain gene, and in turn, determines the fate of a group of cells in a developing embryo.

"If we can understand the mechanism, or how certain stem cells choose a particular path, we can alter it to prevent or treat disease," said Daniel Garry, M.D., Ph.D., lead researcher, executive director of the institute, and chief of the cardiovascular division in the Department of Medicine. "This gene discovery provides the key to unlocking the secret of how blood vessels grow."

Researchers knew that certain precursor cells, or progenitor cells, become the three types of cells that make up the cardiovascular system: smooth muscle, endothelial (blood vessel), and cardiac muscle. What they didn't know, until now, is how those progenitor cells end up as one type or another. Garry likened the team's discovery to finding the recipe of how certain cells become blood vessels.

By understanding how the cells develop, Garry said they will be able to study how they might modify the gene to create a desired response.

"Next we are looking at how we could over-express the gene or knock it down," he said.

For example, in the case of heart disease or heart failure, they may be able to "turn on" the gene to make it create new, healthy blood vessels. Or, in the case of cancer, they could turn off the gene to limit blood supply to a tumor, causing it to shrink.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Monoamine neurotransmitters emerge as architects of brain physiology