Discovery of new mode of how diseases evolve

Researchers of the Michael G. DeGroote Institute for Infectious Disease Research have discovered a new way that bacteria evolve into something that can make you sick.

The finding, published in the Feb. 16 issue of the Proceedings of the National Academy of Sciences, has implications for how scientists identify and assign risk to emerging diseases in the environment.

The researchers found that bacteria can develop into illness-causing pathogens by rewiring regulatory DNA, the genetic material that controls disease-causing genes in a body. Previously, disease evolution was thought to occur mainly through the addition or deletion of genes.

Brian Coombes, an assistant professor in the Department of Biochemistry and Biomedical Sciences, was the lead investigator of the study which involved researchers at McMaster University, the University of Melbourne, Australia and the University of Illinois at Chicago, USA.

"Bacterial cells contain about 5,000 different genes, but only a fraction of them are used at any given time," Coombes said. "The difference between being able to cause disease, or not cause disease, lies in where, when and what genes in this collection are turned on. We've discovered how bacteria evolve to turn on just the right combination of genes in order to cause disease in a host. It's similar to playing a musical instrument - you have to play the right keys in the right order to make music."

With infectious diseases on the rise, the McMaster finding has implications on how new pathogens are identified in the environment. Scientists currently monitor the risk of new diseases by assessing the gene content of bacteria found in water, food and animals.

"This opens up significant new challenges for us as we move forward with this idea of assigning risk to new pathogens," Coombes said. "Because now, we know it's not just gene content - it is gene content plus regulation of those genes."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
First U.S. trial uses non-viral CRISPR to correct sickle cell mutation